|
| 1 | +/* This is a small demo of the high-performance ThreadX kernel. It includes examples of eight |
| 2 | + threads of different priorities, using a message queue, semaphore, mutex, event flags group, |
| 3 | + byte pool, and block pool. */ |
| 4 | + |
| 5 | +#include "tx_api.h" |
| 6 | + |
| 7 | +#define DEMO_STACK_SIZE 1024 |
| 8 | +#define DEMO_BYTE_POOL_SIZE 9120 |
| 9 | +#define DEMO_BLOCK_POOL_SIZE 100 |
| 10 | +#define DEMO_QUEUE_SIZE 100 |
| 11 | + |
| 12 | + |
| 13 | +/* Define the ThreadX object control blocks... */ |
| 14 | + |
| 15 | +TX_THREAD thread_0; |
| 16 | +TX_THREAD thread_1; |
| 17 | +TX_THREAD thread_2; |
| 18 | +TX_THREAD thread_3; |
| 19 | +TX_THREAD thread_4; |
| 20 | +TX_THREAD thread_5; |
| 21 | +TX_THREAD thread_6; |
| 22 | +TX_THREAD thread_7; |
| 23 | +TX_QUEUE queue_0; |
| 24 | +TX_SEMAPHORE semaphore_0; |
| 25 | +TX_MUTEX mutex_0; |
| 26 | +TX_EVENT_FLAGS_GROUP event_flags_0; |
| 27 | +TX_BYTE_POOL byte_pool_0; |
| 28 | +TX_BLOCK_POOL block_pool_0; |
| 29 | + |
| 30 | + |
| 31 | +/* Define the counters used in the demo application... */ |
| 32 | + |
| 33 | +ULONG thread_0_counter; |
| 34 | +ULONG thread_1_counter; |
| 35 | +ULONG thread_1_messages_sent; |
| 36 | +ULONG thread_2_counter; |
| 37 | +ULONG thread_2_messages_received; |
| 38 | +ULONG thread_3_counter; |
| 39 | +ULONG thread_4_counter; |
| 40 | +ULONG thread_5_counter; |
| 41 | +ULONG thread_6_counter; |
| 42 | +ULONG thread_7_counter; |
| 43 | + |
| 44 | + |
| 45 | +/* Define thread prototypes. */ |
| 46 | + |
| 47 | +void thread_0_entry(ULONG thread_input); |
| 48 | +void thread_1_entry(ULONG thread_input); |
| 49 | +void thread_2_entry(ULONG thread_input); |
| 50 | +void thread_3_and_4_entry(ULONG thread_input); |
| 51 | +void thread_5_entry(ULONG thread_input); |
| 52 | +void thread_6_and_7_entry(ULONG thread_input); |
| 53 | + |
| 54 | + |
| 55 | +/* Define main entry point. */ |
| 56 | + |
| 57 | +int main() |
| 58 | +{ |
| 59 | + |
| 60 | + /* Enter the ThreadX kernel. */ |
| 61 | + tx_kernel_enter(); |
| 62 | +} |
| 63 | + |
| 64 | + |
| 65 | +/* Define what the initial system looks like. */ |
| 66 | + |
| 67 | +void tx_application_define(void *first_unused_memory) |
| 68 | +{ |
| 69 | + |
| 70 | +CHAR *pointer = TX_NULL; |
| 71 | + |
| 72 | + |
| 73 | + /* Create a byte memory pool from which to allocate the thread stacks. */ |
| 74 | + tx_byte_pool_create(&byte_pool_0, "byte pool 0", first_unused_memory, DEMO_BYTE_POOL_SIZE); |
| 75 | + |
| 76 | + /* Put system definition stuff in here, e.g. thread creates and other assorted |
| 77 | + create information. */ |
| 78 | + |
| 79 | + /* Allocate the stack for thread 0. */ |
| 80 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); |
| 81 | + |
| 82 | + /* Create the main thread. */ |
| 83 | + tx_thread_create(&thread_0, "thread 0", thread_0_entry, 0, |
| 84 | + pointer, DEMO_STACK_SIZE, |
| 85 | + 1, 1, TX_NO_TIME_SLICE, TX_AUTO_START); |
| 86 | + |
| 87 | + |
| 88 | + /* Allocate the stack for thread 1. */ |
| 89 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); |
| 90 | + |
| 91 | + /* Create threads 1 and 2. These threads pass information through a ThreadX |
| 92 | + message queue. It is also interesting to note that these threads have a time |
| 93 | + slice. */ |
| 94 | + tx_thread_create(&thread_1, "thread 1", thread_1_entry, 1, |
| 95 | + pointer, DEMO_STACK_SIZE, |
| 96 | + 16, 16, 4, TX_AUTO_START); |
| 97 | + |
| 98 | + /* Allocate the stack for thread 2. */ |
| 99 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); |
| 100 | + |
| 101 | + tx_thread_create(&thread_2, "thread 2", thread_2_entry, 2, |
| 102 | + pointer, DEMO_STACK_SIZE, |
| 103 | + 16, 16, 4, TX_AUTO_START); |
| 104 | + |
| 105 | + /* Allocate the stack for thread 3. */ |
| 106 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); |
| 107 | + |
| 108 | + /* Create threads 3 and 4. These threads compete for a ThreadX counting semaphore. |
| 109 | + An interesting thing here is that both threads share the same instruction area. */ |
| 110 | + tx_thread_create(&thread_3, "thread 3", thread_3_and_4_entry, 3, |
| 111 | + pointer, DEMO_STACK_SIZE, |
| 112 | + 8, 8, TX_NO_TIME_SLICE, TX_AUTO_START); |
| 113 | + |
| 114 | + /* Allocate the stack for thread 4. */ |
| 115 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); |
| 116 | + |
| 117 | + tx_thread_create(&thread_4, "thread 4", thread_3_and_4_entry, 4, |
| 118 | + pointer, DEMO_STACK_SIZE, |
| 119 | + 8, 8, TX_NO_TIME_SLICE, TX_AUTO_START); |
| 120 | + |
| 121 | + /* Allocate the stack for thread 5. */ |
| 122 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); |
| 123 | + |
| 124 | + /* Create thread 5. This thread simply pends on an event flag which will be set |
| 125 | + by thread_0. */ |
| 126 | + tx_thread_create(&thread_5, "thread 5", thread_5_entry, 5, |
| 127 | + pointer, DEMO_STACK_SIZE, |
| 128 | + 4, 4, TX_NO_TIME_SLICE, TX_AUTO_START); |
| 129 | + |
| 130 | + /* Allocate the stack for thread 6. */ |
| 131 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); |
| 132 | + |
| 133 | + /* Create threads 6 and 7. These threads compete for a ThreadX mutex. */ |
| 134 | + tx_thread_create(&thread_6, "thread 6", thread_6_and_7_entry, 6, |
| 135 | + pointer, DEMO_STACK_SIZE, |
| 136 | + 8, 8, TX_NO_TIME_SLICE, TX_AUTO_START); |
| 137 | + |
| 138 | + /* Allocate the stack for thread 7. */ |
| 139 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); |
| 140 | + |
| 141 | + tx_thread_create(&thread_7, "thread 7", thread_6_and_7_entry, 7, |
| 142 | + pointer, DEMO_STACK_SIZE, |
| 143 | + 8, 8, TX_NO_TIME_SLICE, TX_AUTO_START); |
| 144 | + |
| 145 | + /* Allocate the message queue. */ |
| 146 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_QUEUE_SIZE*sizeof(ULONG), TX_NO_WAIT); |
| 147 | + |
| 148 | + /* Create the message queue shared by threads 1 and 2. */ |
| 149 | + tx_queue_create(&queue_0, "queue 0", TX_1_ULONG, pointer, DEMO_QUEUE_SIZE*sizeof(ULONG)); |
| 150 | + |
| 151 | + /* Create the semaphore used by threads 3 and 4. */ |
| 152 | + tx_semaphore_create(&semaphore_0, "semaphore 0", 1); |
| 153 | + |
| 154 | + /* Create the event flags group used by threads 1 and 5. */ |
| 155 | + tx_event_flags_create(&event_flags_0, "event flags 0"); |
| 156 | + |
| 157 | + /* Create the mutex used by thread 6 and 7 without priority inheritance. */ |
| 158 | + tx_mutex_create(&mutex_0, "mutex 0", TX_NO_INHERIT); |
| 159 | + |
| 160 | + /* Allocate the memory for a small block pool. */ |
| 161 | + tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_BLOCK_POOL_SIZE, TX_NO_WAIT); |
| 162 | + |
| 163 | + /* Create a block memory pool to allocate a message buffer from. */ |
| 164 | + tx_block_pool_create(&block_pool_0, "block pool 0", sizeof(ULONG), pointer, DEMO_BLOCK_POOL_SIZE); |
| 165 | + |
| 166 | + /* Allocate a block and release the block memory. */ |
| 167 | + tx_block_allocate(&block_pool_0, (VOID **) &pointer, TX_NO_WAIT); |
| 168 | + |
| 169 | + /* Release the block back to the pool. */ |
| 170 | + tx_block_release(pointer); |
| 171 | +} |
| 172 | + |
| 173 | + |
| 174 | + |
| 175 | +/* Define the test threads. */ |
| 176 | + |
| 177 | +void thread_0_entry(ULONG thread_input) |
| 178 | +{ |
| 179 | + |
| 180 | +UINT status; |
| 181 | + |
| 182 | + |
| 183 | + /* This thread simply sits in while-forever-sleep loop. */ |
| 184 | + while(1) |
| 185 | + { |
| 186 | + |
| 187 | + /* Increment the thread counter. */ |
| 188 | + thread_0_counter++; |
| 189 | + |
| 190 | + /* Sleep for 10 ticks. */ |
| 191 | + tx_thread_sleep(10); |
| 192 | + |
| 193 | + /* Set event flag 0 to wakeup thread 5. */ |
| 194 | + status = tx_event_flags_set(&event_flags_0, 0x1, TX_OR); |
| 195 | + |
| 196 | + /* Check status. */ |
| 197 | + if (status != TX_SUCCESS) |
| 198 | + break; |
| 199 | + } |
| 200 | +} |
| 201 | + |
| 202 | + |
| 203 | +void thread_1_entry(ULONG thread_input) |
| 204 | +{ |
| 205 | + |
| 206 | +UINT status; |
| 207 | + |
| 208 | + |
| 209 | + /* This thread simply sends messages to a queue shared by thread 2. */ |
| 210 | + while(1) |
| 211 | + { |
| 212 | + |
| 213 | + /* Increment the thread counter. */ |
| 214 | + thread_1_counter++; |
| 215 | + |
| 216 | + /* Send message to queue 0. */ |
| 217 | + status = tx_queue_send(&queue_0, &thread_1_messages_sent, TX_WAIT_FOREVER); |
| 218 | + |
| 219 | + /* Check completion status. */ |
| 220 | + if (status != TX_SUCCESS) |
| 221 | + break; |
| 222 | + |
| 223 | + /* Increment the message sent. */ |
| 224 | + thread_1_messages_sent++; |
| 225 | + } |
| 226 | +} |
| 227 | + |
| 228 | + |
| 229 | +void thread_2_entry(ULONG thread_input) |
| 230 | +{ |
| 231 | + |
| 232 | +ULONG received_message; |
| 233 | +UINT status; |
| 234 | + |
| 235 | + /* This thread retrieves messages placed on the queue by thread 1. */ |
| 236 | + while(1) |
| 237 | + { |
| 238 | + |
| 239 | + /* Increment the thread counter. */ |
| 240 | + thread_2_counter++; |
| 241 | + |
| 242 | + /* Retrieve a message from the queue. */ |
| 243 | + status = tx_queue_receive(&queue_0, &received_message, TX_WAIT_FOREVER); |
| 244 | + |
| 245 | + /* Check completion status and make sure the message is what we |
| 246 | + expected. */ |
| 247 | + if ((status != TX_SUCCESS) || (received_message != thread_2_messages_received)) |
| 248 | + break; |
| 249 | + |
| 250 | + /* Otherwise, all is okay. Increment the received message count. */ |
| 251 | + thread_2_messages_received++; |
| 252 | + } |
| 253 | +} |
| 254 | + |
| 255 | + |
| 256 | +void thread_3_and_4_entry(ULONG thread_input) |
| 257 | +{ |
| 258 | + |
| 259 | +UINT status; |
| 260 | + |
| 261 | + |
| 262 | + /* This function is executed from thread 3 and thread 4. As the loop |
| 263 | + below shows, these function compete for ownership of semaphore_0. */ |
| 264 | + while(1) |
| 265 | + { |
| 266 | + |
| 267 | + /* Increment the thread counter. */ |
| 268 | + if (thread_input == 3) |
| 269 | + thread_3_counter++; |
| 270 | + else |
| 271 | + thread_4_counter++; |
| 272 | + |
| 273 | + /* Get the semaphore with suspension. */ |
| 274 | + status = tx_semaphore_get(&semaphore_0, TX_WAIT_FOREVER); |
| 275 | + |
| 276 | + /* Check status. */ |
| 277 | + if (status != TX_SUCCESS) |
| 278 | + break; |
| 279 | + |
| 280 | + /* Sleep for 2 ticks to hold the semaphore. */ |
| 281 | + tx_thread_sleep(2); |
| 282 | + |
| 283 | + /* Release the semaphore. */ |
| 284 | + status = tx_semaphore_put(&semaphore_0); |
| 285 | + |
| 286 | + /* Check status. */ |
| 287 | + if (status != TX_SUCCESS) |
| 288 | + break; |
| 289 | + } |
| 290 | +} |
| 291 | + |
| 292 | + |
| 293 | +void thread_5_entry(ULONG thread_input) |
| 294 | +{ |
| 295 | + |
| 296 | +UINT status; |
| 297 | +ULONG actual_flags; |
| 298 | + |
| 299 | + |
| 300 | + /* This thread simply waits for an event in a forever loop. */ |
| 301 | + while(1) |
| 302 | + { |
| 303 | + |
| 304 | + /* Increment the thread counter. */ |
| 305 | + thread_5_counter++; |
| 306 | + |
| 307 | + /* Wait for event flag 0. */ |
| 308 | + status = tx_event_flags_get(&event_flags_0, 0x1, TX_OR_CLEAR, |
| 309 | + &actual_flags, TX_WAIT_FOREVER); |
| 310 | + |
| 311 | + /* Check status. */ |
| 312 | + if ((status != TX_SUCCESS) || (actual_flags != 0x1)) |
| 313 | + break; |
| 314 | + } |
| 315 | +} |
| 316 | + |
| 317 | + |
| 318 | +void thread_6_and_7_entry(ULONG thread_input) |
| 319 | +{ |
| 320 | + |
| 321 | +UINT status; |
| 322 | + |
| 323 | + |
| 324 | + /* This function is executed from thread 6 and thread 7. As the loop |
| 325 | + below shows, these function compete for ownership of mutex_0. */ |
| 326 | + while(1) |
| 327 | + { |
| 328 | + |
| 329 | + /* Increment the thread counter. */ |
| 330 | + if (thread_input == 6) |
| 331 | + thread_6_counter++; |
| 332 | + else |
| 333 | + thread_7_counter++; |
| 334 | + |
| 335 | + /* Get the mutex with suspension. */ |
| 336 | + status = tx_mutex_get(&mutex_0, TX_WAIT_FOREVER); |
| 337 | + |
| 338 | + /* Check status. */ |
| 339 | + if (status != TX_SUCCESS) |
| 340 | + break; |
| 341 | + |
| 342 | + /* Get the mutex again with suspension. This shows |
| 343 | + that an owning thread may retrieve the mutex it |
| 344 | + owns multiple times. */ |
| 345 | + status = tx_mutex_get(&mutex_0, TX_WAIT_FOREVER); |
| 346 | + |
| 347 | + /* Check status. */ |
| 348 | + if (status != TX_SUCCESS) |
| 349 | + break; |
| 350 | + |
| 351 | + /* Sleep for 2 ticks to hold the mutex. */ |
| 352 | + tx_thread_sleep(2); |
| 353 | + |
| 354 | + /* Release the mutex. */ |
| 355 | + status = tx_mutex_put(&mutex_0); |
| 356 | + |
| 357 | + /* Check status. */ |
| 358 | + if (status != TX_SUCCESS) |
| 359 | + break; |
| 360 | + |
| 361 | + /* Release the mutex again. This will actually |
| 362 | + release ownership since it was obtained twice. */ |
| 363 | + status = tx_mutex_put(&mutex_0); |
| 364 | + |
| 365 | + /* Check status. */ |
| 366 | + if (status != TX_SUCCESS) |
| 367 | + break; |
| 368 | + } |
| 369 | +} |
0 commit comments