@@ -131,27 +131,33 @@ def test_slise_reg():
131131 # S = (Y - Yp) ** 2 < reg1.epsilon ** 2
132132 # Sn = (Yn - Ynp) ** 2 < reg1.epsilon_orig ** 2
133133 assert np .allclose (
134- Ypn , Ynp ,
134+ Ypn , Ynp
135135 ), f"The predicted Y's are not the same { np .max (np .abs (Ynp - Ypn ))} "
136- assert (
137- reg1 .score () <= 0
138- ), f"SLISE loss should be negative ({ reg1 .score ():.2f} , { reg1 .subset ().mean ():.2f} )"
139- assert 1.0 >= reg1 .subset ().mean () > 0.75
136+ assert reg1 .score () <= 0 , f"SLISE loss should be negative ({ reg1 .score ()} )"
137+ assert 1.0 >= reg1 .subset ().mean () > 0.7
140138 reg2 = regression (
141- X , Y , epsilon = 0.1 , lambda1 = 1e-4 , lambda2 = 1e-4 , intercept = True , normalise = False ,
139+ X ,
140+ Y ,
141+ epsilon = 0.1 ,
142+ lambda1 = 1e-4 ,
143+ lambda2 = 1e-4 ,
144+ intercept = True ,
145+ normalise = False ,
142146 )
143147 reg2 .print ()
144- assert (
145- reg2 .score () <= 0
146- ), f"SLISE loss should be negative ({ reg2 .score ():.2f} , { reg2 .subset ().mean ():.2f} )"
148+ assert reg2 .score () <= 0 , f"SLISE loss should be negative ({ reg2 .score ()} )"
147149 assert 1.0 >= reg2 .subset ().mean () > 0.5
148150 reg3 = regression (
149- X , Y , epsilon = 0.1 , lambda1 = 0 , lambda2 = 0 , intercept = True , normalise = False ,
151+ X ,
152+ Y ,
153+ epsilon = 0.1 ,
154+ lambda1 = 0 ,
155+ lambda2 = 0 ,
156+ intercept = True ,
157+ normalise = False ,
150158 )
151159 reg3 .print ()
152- assert (
153- reg3 .score () <= 0
154- ), f"SLISE loss should be negative ({ reg3 .score ():.2f} , { reg3 .subset ().mean ():.2f} )"
160+ assert reg3 .score () <= 0 , f"SLISE loss should be negative ({ reg3 .score ()} )"
155161 assert 1.0 >= reg3 .subset ().mean () > 0.5
156162 reg4 = regression (
157163 X ,
@@ -164,9 +170,7 @@ def test_slise_reg():
164170 weight = w ,
165171 )
166172 reg4 .print ()
167- assert (
168- reg4 .score () <= 0
169- ), f"SLISE loss should be negative ({ reg4 .score ():.2f} , { reg4 .subset ().mean ():.2f} )"
173+ assert reg4 .score () <= 0 , f"SLISE loss should be negative ({ reg4 .score ()} )"
170174 assert 1.0 >= reg4 .subset ().mean () > 0.4
171175
172176
0 commit comments