Skip to content

Commit 63f0e41

Browse files
committed
add citation for the local explanation paper
1 parent 9eebb34 commit 63f0e41

File tree

3 files changed

+36
-19
lines changed

3 files changed

+36
-19
lines changed

CITATIONS.bib

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,14 @@
1+
@article{bjorklund2023explaining,
2+
title = {Explaining any black box model using real data},
3+
author = {Bj{\"o}rklund, Anton and Henelius, Andreas and Oikarinen, Emilia and Kallonen, Kimmo and Puolam{\"a}ki, Kai},
4+
journal = {Frontiers in Computer Science},
5+
volume = {5},
6+
year = {2023},
7+
url = {https://www.frontiersin.org/articles/10.3389/fcomp.2023.1143904},
8+
doi = {10.3389/fcomp.2023.1143904},
9+
issn = {2624-9898}
10+
}
11+
112
@article{bjorklund2022robust,
213
title = {Robust regression via error tolerance},
314
author = {Bj{\"o}rklund, Anton and Henelius, Andreas and Oikarinen, Emilia and Kallonen, Kimmo and Puolam{\"a}ki, Kai},

README.md

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
# SLISE - Sparse Linear Subset Explanations
99

1010
Python implementation of the SLISE algorithm. The SLISE algorithm can be used for both robust regression and to explain outcomes from black box models.
11-
For more details see [the original paper](https://rdcu.be/bVbda) or [the robust regression paper](https://rdcu.be/cFRHD).
11+
For more details see the [conference paper](https://rdcu.be/bVbda), the [robust regression paper](https://rdcu.be/cFRHD), or the [local explanation paper](https://doi.org/10.3389/fcomp.2023.1143904).
1212
Alternatively for a more informal overview see [the presentation](https://github.com/edahelsinki/slise/raw/master/vignettes/presentation.pdf), or [the poster](https://github.com/edahelsinki/slise/raw/master/vignettes/poster.pdf).
1313
Finally, for learning to use the python package there are several [examples](https://github.com/edahelsinki/pyslise/tree/master/examples/) and [the documentation](https://edahelsinki.github.io/pyslise/docs/slise/).
1414

@@ -23,6 +23,11 @@ Finally, for learning to use the python package there are several [examples](htt
2323
> Data Mining and Knowledge Discovery.
2424
> https://doi.org/10.1007/s10618-022-00819-2
2525
26+
> *Björklund A., Henelius A., Oikarinen E., Kallonen K., Puolamäki K.* (2023)
27+
> **Explaining any black box model using real data.**
28+
> Frontiers in Computer Science 5:1143904.
29+
> https://doi.org/10.3389/fcomp.2023.1143904
30+
2631
## The idea
2732

2833
In robust regression we fit regression models that can handle data that contains outliers (see the example below for why outliers are problematic for normal regression). SLISE accomplishes this by fitting a model such that the largest possible subset of the data items have an error less than a given value. All items with an error larger than that are considered potential outliers and do not affect the resulting model.

mkdocs.yml

Lines changed: 19 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ theme:
1515
primary: deep purple
1616
accent: deep orange
1717
toggle:
18-
icon: material/lightbulb
18+
icon: material/lightbulb
1919
name: Switch to dark mode
2020
- media: "(prefers-color-scheme: dark)"
2121
scheme: slate
@@ -30,29 +30,30 @@ theme:
3030
- navigation.indexes
3131

3232
nav:
33-
- Home: 'index.md'
33+
- Home: "index.md"
3434
- Documentation:
35-
- slise: docs/slise.md
36-
- slise.slise: docs/slise.slise.md
37-
- slise.data: docs/slise.data.md
38-
- slise.initialisation: docs/slise.initialisation.md
39-
- slise.optimisation: docs/slise.optimisation.md
40-
- slise.plot: docs/slise.plot.md
41-
- slise.utils: docs/slise.utils.md
35+
- slise: docs/slise.md
36+
- slise.slise: docs/slise.slise.md
37+
- slise.data: docs/slise.data.md
38+
- slise.initialisation: docs/slise.initialisation.md
39+
- slise.optimisation: docs/slise.optimisation.md
40+
- slise.plot: docs/slise.plot.md
41+
- slise.utils: docs/slise.utils.md
4242
- Links:
43-
- GitHub: https://github.com/edahelsinki/pyslise
44-
- PyPI: https://pypi.org/project/slise/
45-
- Original paper: https://rdcu.be/bVbda
46-
- Robust regression paper: https://rdcu.be/cFRHD
47-
- Examples: https://github.com/edahelsinki/pyslise/tree/master/examples
43+
- GitHub: https://github.com/edahelsinki/pyslise
44+
- PyPI: https://pypi.org/project/slise/
45+
- Original conference paper: https://rdcu.be/bVbda
46+
- Robust regression paper: https://rdcu.be/cFRHD
47+
- Local Explantions paper: https://doi.org/10.3389/fcomp.2023.1143904
48+
- Examples: https://github.com/edahelsinki/pyslise/tree/master/examples
4849

4950
plugins:
50-
# - offline
51+
# - offline
5152
- search
5253
- mkdocstrings:
5354
handlers:
5455
python:
5556
options:
56-
members_order: source
57-
show_root_heading: True
58-
- include-markdown
57+
members_order: source
58+
show_root_heading: True
59+
- include-markdown

0 commit comments

Comments
 (0)