-
Notifications
You must be signed in to change notification settings - Fork 159
Open
Description
你好,想请教一下
` elif supervision == 'semi':
outs = net(data)
output, rec = outs
#target = target - 1
loss = criterion[0](output, target) + net.aux_loss_weight * criterion[1](rec, data)`
这里返回的rec对应的是模型中分类前一步结果送入nn.Linear(self.features_sizes, input_channels)中得到,这里对于模型
criterion = (nn.CrossEntropyLoss(weight=kwargs['weights']), lambda rec, data: F.mse_loss(rec, data[:,:,:,patch_size//2,patch_size//2].squeeze()))这段有什么作用?
Metadata
Metadata
Assignees
Labels
No labels