@@ -23,7 +23,7 @@ varView D = no-var
2323mutual
2424 Hyp : ∀ {ι β γ} {I : Set ι} {B}
2525 -> (∀ {i} -> B i -> Set γ) -> (D : Desc I β) -> ⟦ D ⟧ B -> Set (β ⊔ γ)
26- Hyp {β = β} C (var i) y = Lift {ℓ = β} (C y)
26+ Hyp {β = β} C (var i) y = Lift β (C y)
2727 Hyp C (π i q D) f = Hypᵇ i C D f
2828 Hyp C (D ⊛ E) (x , y) = Hyp C D x × Hyp C E y
2929
3838 -> (D : Desc I β)
3939 -> (∀ {j} -> Extend D B j -> B j)
4040 -> Set (β ⊔ γ)
41- Elim {β = β} C (var i) k = Lift {ℓ = β} (C (k lrefl))
42- Elim C (π i q D) k = Elimᵇ i C D k
41+ Elim {β = β} C (var i) k = Lift β (C (k lrefl))
42+ Elim C (π i q D) k = Elimᵇ i C D k
4343 Elim C (D ⊛ E) k with varView D
4444 ... | yes-var = ∀ {x} -> C x -> Elim C E (k ∘ _,_ x)
4545 ... | no-var = ∀ {x} -> Hyp C D x -> Elim C E (k ∘ _,_ x)
@@ -85,7 +85,7 @@ module _ {ι β γ} {I : Set ι} {D₀ : Data (Desc I β)} (C : ∀ {j} -> μ D
8585 -> (e : Extend D (μ D₀) j)
8686 -> C (k e)
8787 elimExtend (var i) z lrefl = lower z
88- elimExtend (π i q D) h p = elimExtendᵇ i D h p
88+ elimExtend (π i q D) h p = elimExtendᵇ i D h p
8989 elimExtend (D ⊛ E) h (d , e) with varView D
9090 ... | yes-var = elimExtend E (h (elim d)) e
9191 ... | no-var = elimExtend E (h (elimHyp D d)) e
0 commit comments