@@ -3810,19 +3810,26 @@ def rolling(
38103810 )
38113811
38123812 @final
3813- def expanding (self , * args , ** kwargs ) -> ExpandingGroupby :
3813+ def expanding (
3814+ self ,
3815+ min_periods : int = 1 ,
3816+ method : str = "single" ,
3817+ ) -> ExpandingGroupby :
38143818 """
38153819 Return an expanding grouper, providing expanding functionality per group.
38163820
3817- Arguments are the same as `:meth:DataFrame.rolling` except that ``step`` cannot
3818- be specified.
3819-
38203821 Parameters
38213822 ----------
3822- *args : tuple
3823- Positional arguments passed to the expanding window constructor.
3824- **kwargs : dict
3825- Keyword arguments passed to the expanding window constructor.
3823+ min_periods : int, default 1
3824+ Minimum number of observations in window required to have a value;
3825+ otherwise, result is ``np.nan``.
3826+
3827+ method : str {'single', 'table'}, default 'single'
3828+ Execute the expanding operation per single column or row (``'single'``)
3829+ or over the entire object (``'table'``).
3830+
3831+ This argument is only implemented when specifying ``engine='numba'``
3832+ in the method call.
38263833
38273834 Returns
38283835 -------
@@ -3845,7 +3852,7 @@ def expanding(self, *args, **kwargs) -> ExpandingGroupby:
38453852 ... }
38463853 ... )
38473854 >>> df
3848- Class Value
3855+ Class Value
38493856 0 A 10
38503857 1 A 20
38513858 2 A 30
@@ -3854,7 +3861,7 @@ def expanding(self, *args, **kwargs) -> ExpandingGroupby:
38543861 5 B 60
38553862
38563863 >>> df.groupby("Class").expanding().mean()
3857- Value
3864+ Value
38583865 Class
38593866 A 0 10.0
38603867 1 15.0
@@ -3867,9 +3874,9 @@ def expanding(self, *args, **kwargs) -> ExpandingGroupby:
38673874
38683875 return ExpandingGroupby (
38693876 self ._selected_obj ,
3870- * args ,
3877+ min_periods = min_periods ,
3878+ method = method ,
38713879 _grouper = self ._grouper ,
3872- ** kwargs ,
38733880 )
38743881
38753882 @final
0 commit comments