File tree Expand file tree Collapse file tree 2 files changed +17
-2
lines changed Expand file tree Collapse file tree 2 files changed +17
-2
lines changed Original file line number Diff line number Diff line change @@ -664,6 +664,7 @@ Data type introspection
664664 api.types.is_datetime64_dtype
665665 api.types.is_datetime64_ns_dtype
666666 api.types.is_datetime64tz_dtype
667+ api.types.is_dtype_equal
667668 api.types.is_extension_array_dtype
668669 api.types.is_float_dtype
669670 api.types.is_int64_dtype
Original file line number Diff line number Diff line change @@ -655,24 +655,38 @@ def is_dtype_equal(source, target) -> bool:
655655
656656 Parameters
657657 ----------
658- source : The first dtype to compare
659- target : The second dtype to compare
658+ source : type or str
659+ The first dtype to compare.
660+ target : type or str
661+ The second dtype to compare.
660662
661663 Returns
662664 -------
663665 boolean
664666 Whether or not the two dtypes are equal.
665667
668+ See Also
669+ --------
670+ api.types.is_categorical_dtype : Check whether the provided array or dtype
671+ is of the Categorical dtype.
672+ api.types.is_string_dtype : Check whether the provided array or dtype
673+ is of the string dtype.
674+ api.types.is_object_dtype : Check whether an array-like or dtype is of the
675+ object dtype.
676+
666677 Examples
667678 --------
679+ >>> from pandas.api.types import is_dtype_equal
668680 >>> is_dtype_equal(int, float)
669681 False
670682 >>> is_dtype_equal("int", int)
671683 True
672684 >>> is_dtype_equal(object, "category")
673685 False
686+ >>> from pandas.core.dtypes.dtypes import CategoricalDtype
674687 >>> is_dtype_equal(CategoricalDtype(), "category")
675688 True
689+ >>> from pandas.core.dtypes.dtypes import DatetimeTZDtype
676690 >>> is_dtype_equal(DatetimeTZDtype(tz="UTC"), "datetime64")
677691 False
678692 """
You can’t perform that action at this time.
0 commit comments