Skip to content

Commit 1325185

Browse files
authored
Merge branch 'main' into 356-internal
2 parents 59ea0b4 + c9c5259 commit 1325185

File tree

63 files changed

+358
-190
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

63 files changed

+358
-190
lines changed

deploy-manage/tools/snapshot-and-restore/s3-repository.md

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -377,6 +377,13 @@ AWS instances resolve S3 endpoints to a public IP. If the {{es}} instances resid
377377

378378
Instances residing in a public subnet in an AWS VPC will connect to S3 via the VPC’s internet gateway and not be bandwidth limited by the VPC’s NAT instance.
379379

380+
## Replicating objects [repository-s3-replicating-objects]
381+
382+
AWS S3 supports [replication of objects](https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html), both within a single region and across regions. However, this replication is not compatible with {{es}} snapshots.
383+
384+
The objects that {{es}} writes to the repository refer to other objects in the repository. {{es}} writes objects in a very specific order to ensure that each object only refers to objects which already exist. Likewise, {{es}} only deletes an object from the repository after it becomes unreferenced by all other objects. AWS S3 replication will apply operations to the replica repository in a different order from the order in which {{es}} applies them to the primary repository, which can cause some objects in replica repositories to refer to other objects that do not exist. This is an invalid state. It may not be possible to recover any data from a repository if it is in this state.
385+
386+
To replicate a repository's contents elsewhere, follow the [repository backup](/deploy-manage/tools/snapshot-and-restore/self-managed.md#snapshots-repository-backup) process.
380387

381388
## S3-compatible services [repository-s3-compatible-services]
382389

explore-analyze/machine-learning/anomaly-detection/geographic-anomalies.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ There are a few limitations to consider before you create this type of job:
4141
1. You cannot create forecasts for {{anomaly-jobs}} that contain geographic functions.
4242
2. You cannot add [custom rules with conditions](/explore-analyze/machine-learning/anomaly-detection/ml-ad-run-jobs.md#ml-ad-rules) to detectors that use geographic functions.
4343

44-
If those limitations are acceptable, try creating an {{anomaly-job}} that uses the [`lat_long` function](/reference/data-analysis/machine-learning/ml-geo-functions.md#ml-lat-long) to analyze your own data or the sample data sets.
44+
If those limitations are acceptable, try creating an {{anomaly-job}} that uses the [`lat_long` function](/reference/machine-learning/ml-geo-functions.md#ml-lat-long) to analyze your own data or the sample data sets.
4545

4646
To create an {{anomaly-job}} that uses the `lat_long` function, navigate to the **Anomaly Detection Jobs** page in the main menu, or use the [global search field](../../find-and-organize/find-apps-and-objects.md). Then click **Create job** and select the appropriate job wizard. Alternatively, use the [create {{anomaly-jobs}} API](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-job).
4747

explore-analyze/machine-learning/anomaly-detection/ml-configuring-aggregation.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -40,8 +40,8 @@ There are a number of requirements for using aggregations in {{dfeeds}}.
4040

4141
## Recommendations [aggs-recommendations-dfeeds]
4242

43-
* When your detectors use [metric](/reference/data-analysis/machine-learning/ml-metric-functions.md) or [sum](/reference/data-analysis/machine-learning/ml-sum-functions.md) analytical functions, it’s recommended to set the `date_histogram` or `composite` aggregation interval to a tenth of the bucket span. This creates finer, more granular time buckets, which are ideal for this type of analysis.
44-
* When your detectors use [count](/reference/data-analysis/machine-learning/ml-count-functions.md) or [rare](/reference/data-analysis/machine-learning/ml-rare-functions.md) functions, set the interval to the same value as the bucket span.
43+
* When your detectors use [metric](/reference/machine-learning/ml-metric-functions.md) or [sum](/reference/machine-learning/ml-sum-functions.md) analytical functions, it’s recommended to set the `date_histogram` or `composite` aggregation interval to a tenth of the bucket span. This creates finer, more granular time buckets, which are ideal for this type of analysis.
44+
* When your detectors use [count](/reference/machine-learning/ml-count-functions.md) or [rare](/reference/machine-learning/ml-rare-functions.md) functions, set the interval to the same value as the bucket span.
4545
* If you have multiple influencers or partition fields or if your field cardinality is more than 1000, use [composite aggregations](elasticsearch://reference/aggregations/search-aggregations-bucket-composite-aggregation.md).
4646

4747
To determine the cardinality of your data, you can run searches such as:

explore-analyze/machine-learning/anomaly-detection/ml-configuring-categories.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ products:
1010

1111
# Detecting anomalous categories of data [ml-configuring-categories]
1212

13-
Categorization is a {{ml}} process that tokenizes a text field, clusters similar data together, and classifies it into categories. It works best on machine-written messages and application output that typically consist of repeated elements. [Categorization jobs](ml-anomaly-detection-job-types.md#categorization-jobs) enable you to find anomalous behavior in your categorized data. Categorization is not natural language processing (NLP). When you create a categorization {{anomaly-job}}, the {{ml}} model learns what volume and pattern is normal for each category over time. You can then detect anomalies and surface rare events or unusual types of messages by using [count](/reference/data-analysis/machine-learning/ml-count-functions.md) or [rare](/reference/data-analysis/machine-learning/ml-rare-functions.md) functions. Categorization works well on finite set of possible messages, for example:
13+
Categorization is a {{ml}} process that tokenizes a text field, clusters similar data together, and classifies it into categories. It works best on machine-written messages and application output that typically consist of repeated elements. [Categorization jobs](ml-anomaly-detection-job-types.md#categorization-jobs) enable you to find anomalous behavior in your categorized data. Categorization is not natural language processing (NLP). When you create a categorization {{anomaly-job}}, the {{ml}} model learns what volume and pattern is normal for each category over time. You can then detect anomalies and surface rare events or unusual types of messages by using [count](/reference/machine-learning/ml-count-functions.md) or [rare](/reference/machine-learning/ml-rare-functions.md) functions. Categorization works well on finite set of possible messages, for example:
1414

1515
```js
1616
{"@timestamp":1549596476000,

explore-analyze/machine-learning/anomaly-detection/ml-configuring-transform.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -382,7 +382,7 @@ PUT _ml/anomaly_detectors/test3
382382
GET _ml/datafeeds/datafeed-test3/_preview
383383
```
384384

385-
In {{es}}, location data can be stored in `geo_point` fields but this data type is not supported natively in {{ml}} analytics. This example of a runtime field transforms the data into an appropriate format. For more information, see [Geographic functions](/reference/data-analysis/machine-learning/ml-geo-functions.md).
385+
In {{es}}, location data can be stored in `geo_point` fields but this data type is not supported natively in {{ml}} analytics. This example of a runtime field transforms the data into an appropriate format. For more information, see [Geographic functions](/reference/machine-learning/ml-geo-functions.md).
386386

387387
The preview {{dfeed}} API returns the following results, which show that `41.44` and `90.5` have been combined into "41.44,90.5":
388388

explore-analyze/machine-learning/anomaly-detection/ml-functions.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -21,10 +21,10 @@ You can specify a `summary_count_field_name` with any function except `metric`.
2121

2222
If your data is sparse, there may be gaps in the data which means you might have empty buckets. You might want to treat these as anomalies or you might want these gaps to be ignored. Your decision depends on your use case and what is important to you. It also depends on which functions you use. The `sum` and `count` functions are strongly affected by empty buckets. For this reason, there are `non_null_sum` and `non_zero_count` functions, which are tolerant to sparse data. These functions effectively ignore empty buckets.
2323

24-
* [Count functions](/reference/data-analysis/machine-learning/ml-count-functions.md)
25-
* [Geographic functions](/reference/data-analysis/machine-learning/ml-geo-functions.md)
26-
* [Information content functions](/reference/data-analysis/machine-learning/ml-info-functions.md)
27-
* [Metric functions](/reference/data-analysis/machine-learning/ml-metric-functions.md)
28-
* [Rare functions](/reference/data-analysis/machine-learning/ml-rare-functions.md)
29-
* [Sum functions](/reference/data-analysis/machine-learning/ml-sum-functions.md)
30-
* [Time functions](/reference/data-analysis/machine-learning/ml-time-functions.md)
24+
* [Count functions](/reference/machine-learning/ml-count-functions.md)
25+
* [Geographic functions](/reference/machine-learning/ml-geo-functions.md)
26+
* [Information content functions](/reference/machine-learning/ml-info-functions.md)
27+
* [Metric functions](/reference/machine-learning/ml-metric-functions.md)
28+
* [Rare functions](/reference/machine-learning/ml-rare-functions.md)
29+
* [Sum functions](/reference/machine-learning/ml-sum-functions.md)
30+
* [Time functions](/reference/machine-learning/ml-time-functions.md)

explore-analyze/machine-learning/anomaly-detection/ml-getting-started.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -315,6 +315,6 @@ If you’re now thinking about where {{anomaly-detect}} can be most impactful fo
315315

316316
In general, it is a good idea to start with single metric {{anomaly-jobs}} for your key performance indicators. After you examine these simple analysis results, you will have a better idea of what the influencers might be. You can create multi-metric jobs and split the data or create more complex analysis functions as necessary. For examples of more complicated configuration options, see [Examples](/explore-analyze/machine-learning/anomaly-detection/anomaly-how-tos.md).
317317

318-
If you want to find more sample jobs, see [Supplied configurations](ootb-ml-jobs.md). In particular, there are sample jobs for [Apache](/reference/data-analysis/machine-learning/ootb-ml-jobs-apache.md) and [Nginx](/reference/data-analysis/machine-learning/ootb-ml-jobs-nginx.md) that are quite similar to the examples in this tutorial.
318+
If you want to find more sample jobs, see [Supplied configurations](ootb-ml-jobs.md). In particular, there are sample jobs for [Apache](/reference/machine-learning/ootb-ml-jobs-apache.md) and [Nginx](/reference/machine-learning/ootb-ml-jobs-nginx.md) that are quite similar to the examples in this tutorial.
319319

320320
If you encounter problems, we’re here to help. If you are an existing Elastic customer with a support contract, create a ticket in the [Elastic Support portal](http://support.elastic.co). Or post in the [Elastic forum](https://discuss.elastic.co/).

explore-analyze/machine-learning/anomaly-detection/ml-limitations.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -140,22 +140,22 @@ The charts can also look odd in circumstances where there is very little data to
140140

141141
| Detector functions | Function description | Supported |
142142
| --- | --- | --- |
143-
| count, high_count, low_count, non_zero_count, low_non_zero_count | [Count functions](/reference/data-analysis/machine-learning/ml-count-functions.md) | yes |
144-
| count, high_count, low_count, non_zero_count, low_non_zero_count with summary_count_field_name that is not doc_count (model plot not enabled) | [Count functions](/reference/data-analysis/machine-learning/ml-count-functions.md) | yes |
145-
| non_zero_count with summary_count_field that is not doc_count using cardinality aggregation in datafeed config (model plot not enabled) | [Count functions](/reference/data-analysis/machine-learning/ml-count-functions.md) | yes |
146-
| distinct_count, high_distinct_count, low_distinct_count | [Count functions](/reference/data-analysis/machine-learning/ml-count-functions.md) | yes |
147-
| mean, high_mean, low_mean | [Mean, high_mean, low_mean](/reference/data-analysis/machine-learning/ml-metric-functions.md#ml-metric-mean) | yes |
148-
| min | [Min](/reference/data-analysis/machine-learning/ml-metric-functions.md#ml-metric-min) | yes |
149-
| max | [Max](/reference/data-analysis/machine-learning/ml-metric-functions.md#ml-metric-max) | yes |
150-
| metric | [Metric](/reference/data-analysis/machine-learning/ml-metric-functions.md#ml-metric-metric) | yes |
151-
| median, high_median, low_median | [Median, high_median, low_median](/reference/data-analysis/machine-learning/ml-metric-functions.md#ml-metric-median) | yes |
152-
| sum, high_sum ,low_sum, non_null_sum, high_non_null_sum, low_non_null_sum | [Sum functions](/reference/data-analysis/machine-learning/ml-sum-functions.md) | yes |
153-
| varp, high_varp, low_varp | [Varp, high_varp, low_varp](/reference/data-analysis/machine-learning/ml-metric-functions.md#ml-metric-varp) | yes (only if model plot is enabled) |
154-
| lat_long | [Lat_long](/reference/data-analysis/machine-learning/ml-geo-functions.md#ml-lat-long) | no (but map is displayed in the Anomaly Explorer) |
155-
| info_content, high_info_content, low_info_content | [Info_content, High_info_content, Low_info_content](/reference/data-analysis/machine-learning/ml-info-functions.md#ml-info-content) | yes (only if model plot is enabled) |
156-
| rare | [Rare](/reference/data-analysis/machine-learning/ml-rare-functions.md#ml-rare) | yes |
157-
| freq_rare | [Freq_rare](/reference/data-analysis/machine-learning/ml-rare-functions.md#ml-freq-rare) | no |
158-
| time_of_day, time_of_week | [Time functions](/reference/data-analysis/machine-learning/ml-time-functions.md) | no |
143+
| count, high_count, low_count, non_zero_count, low_non_zero_count | [Count functions](/reference/machine-learning/ml-count-functions.md) | yes |
144+
| count, high_count, low_count, non_zero_count, low_non_zero_count with summary_count_field_name that is not doc_count (model plot not enabled) | [Count functions](/reference/machine-learning/ml-count-functions.md) | yes |
145+
| non_zero_count with summary_count_field that is not doc_count using cardinality aggregation in datafeed config (model plot not enabled) | [Count functions](/reference/machine-learning/ml-count-functions.md) | yes |
146+
| distinct_count, high_distinct_count, low_distinct_count | [Count functions](/reference/machine-learning/ml-count-functions.md) | yes |
147+
| mean, high_mean, low_mean | [Mean, high_mean, low_mean](/reference/machine-learning/ml-metric-functions.md#ml-metric-mean) | yes |
148+
| min | [Min](/reference/machine-learning/ml-metric-functions.md#ml-metric-min) | yes |
149+
| max | [Max](/reference/machine-learning/ml-metric-functions.md#ml-metric-max) | yes |
150+
| metric | [Metric](/reference/machine-learning/ml-metric-functions.md#ml-metric-metric) | yes |
151+
| median, high_median, low_median | [Median, high_median, low_median](/reference/machine-learning/ml-metric-functions.md#ml-metric-median) | yes |
152+
| sum, high_sum ,low_sum, non_null_sum, high_non_null_sum, low_non_null_sum | [Sum functions](/reference/machine-learning/ml-sum-functions.md) | yes |
153+
| varp, high_varp, low_varp | [Varp, high_varp, low_varp](/reference/machine-learning/ml-metric-functions.md#ml-metric-varp) | yes (only if model plot is enabled) |
154+
| lat_long | [Lat_long](/reference/machine-learning/ml-geo-functions.md#ml-lat-long) | no (but map is displayed in the Anomaly Explorer) |
155+
| info_content, high_info_content, low_info_content | [Info_content, High_info_content, Low_info_content](/reference/machine-learning/ml-info-functions.md#ml-info-content) | yes (only if model plot is enabled) |
156+
| rare | [Rare](/reference/machine-learning/ml-rare-functions.md#ml-rare) | yes |
157+
| freq_rare | [Freq_rare](/reference/machine-learning/ml-rare-functions.md#ml-freq-rare) | no |
158+
| time_of_day, time_of_week | [Time functions](/reference/machine-learning/ml-time-functions.md) | no |
159159

160160
### Jobs created in {{kib}} must use {{dfeeds}} [_jobs_created_in_kib_must_use_dfeeds]
161161

explore-analyze/machine-learning/anomaly-detection/ootb-ml-jobs.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -13,15 +13,15 @@ products:
1313

1414
{{anomaly-jobs-cap}} contain the configuration information and metadata necessary to perform an analytics task. {{kib}} can recognize certain types of data and provide specialized wizards for that context. This page lists the categories of the {{anomaly-jobs}} that are ready to use via {{kib}} in **Machine learning**. Refer to [Create {{anomaly-jobs}}](/explore-analyze/machine-learning/anomaly-detection/ml-ad-run-jobs.md#ml-ad-create-job) to learn more about creating a job by using supplied configurations. Logs and Metrics supplied configurations are available and can be created via the related solution UI in {{kib}}.
1515

16-
* [Apache](/reference/data-analysis/machine-learning/ootb-ml-jobs-apache.md)
17-
* [APM](/reference/data-analysis/machine-learning/ootb-ml-jobs-apm.md)
18-
* [{{auditbeat}}](/reference/data-analysis/machine-learning/ootb-ml-jobs-auditbeat.md)
19-
* [Logs](/reference/data-analysis/machine-learning/ootb-ml-jobs-logs-ui.md)
20-
* [{{metricbeat}}](/reference/data-analysis/machine-learning/ootb-ml-jobs-metricbeat.md)
21-
* [Metrics](/reference/data-analysis/machine-learning/ootb-ml-jobs-metrics-ui.md)
22-
* [Nginx](/reference/data-analysis/machine-learning/ootb-ml-jobs-nginx.md)
23-
* [Security](/reference/data-analysis/machine-learning/ootb-ml-jobs-siem.md)
24-
* [Uptime](/reference/data-analysis/machine-learning/ootb-ml-jobs-uptime.md)
16+
* [Apache](/reference/machine-learning/ootb-ml-jobs-apache.md)
17+
* [APM](/reference/machine-learning/ootb-ml-jobs-apm.md)
18+
* [{{auditbeat}}](/reference/machine-learning/ootb-ml-jobs-auditbeat.md)
19+
* [Logs](/reference/machine-learning/ootb-ml-jobs-logs-ui.md)
20+
* [{{metricbeat}}](/reference/machine-learning/ootb-ml-jobs-metricbeat.md)
21+
* [Metrics](/reference/machine-learning/ootb-ml-jobs-metrics-ui.md)
22+
* [Nginx](/reference/machine-learning/ootb-ml-jobs-nginx.md)
23+
* [Security](/reference/machine-learning/ootb-ml-jobs-siem.md)
24+
* [Uptime](/reference/machine-learning/ootb-ml-jobs-uptime.md)
2525

2626
::::{note}
2727
The configurations are only available if data exists that matches the queries specified in the manifest files. These recognizer queries are linked in the descriptions of the individual configurations.

manage-data/data-store/data-streams/failure-store.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -864,3 +864,8 @@ POST _data_stream/_modify
864864

865865
This API gives you fine-grained control over the indices in your failure store, allowing you to manage backup and restoration operations as well as isolate failure data for later remediation.
866866

867+
## Cross Cluster Search compatibility [ccs-compatibility]
868+
869+
:::{important}
870+
Accessing the failure store across clusters using `::failures` is not yet supported.
871+
:::

0 commit comments

Comments
 (0)