-On machine learning nodes, scaling is determined by an estimate of the memory and CPU requirements for the currently configured jobs and trained models. When a new machine learning job tries to start, it looks for a node with adequate native memory and CPU capacity. If one cannot be found, it stays in an `opening` state. If this waiting job exceeds the queueing limit set in the machine learning decider, a scale up is requested. Conversely, as machine learning jobs run, their memory and CPU usage might decrease or other running jobs might finish or close. In this case, if the duration of decreased resource usage exceeds the set value for `down_scale_delay`, a scale down is requested. Check [Machine learning decider](autoscaling-deciders.md)for more detail. To learn more about machine learning jobs in general, check [Create anomaly detection jobs](../../explore-analyze/machine-learning/anomaly-detection/ml-ad-run-jobs.md#ml-ad-create-job)
0 commit comments