Skip to content

Commit 59c3b42

Browse files
committed
Updates markup.
1 parent 328e74f commit 59c3b42

File tree

1 file changed

+14
-8
lines changed

1 file changed

+14
-8
lines changed

solutions/search/semantic-search/semantic-search-semantic-text.md

Lines changed: 14 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -27,14 +27,15 @@ This tutorial uses the `elasticsearch` service for demonstration, which is creat
2727

2828
The mapping of the destination index - the index that contains the embeddings that the inference endpoint will generate based on your input text - must be created. The destination index must have a field with the [`semantic_text`](elasticsearch://reference/elasticsearch/mapping-reference/semantic-text.md) field type to index the output of the used inference endpoint.
2929

30-
::::{tab-set}
30+
:::::::{tab-set}
3131

32-
:::{tab-item} Using EIS on Serverless
32+
::::::{tab-item} Using EIS on Serverless
3333

3434
```{applies_to}
3535
serverless: ga
3636
```
3737

38+
```console
3839
PUT semantic-embeddings
3940
{
4041
"mappings": {
@@ -45,19 +46,22 @@ PUT semantic-embeddings
4546
}
4647
}
4748
}
48-
:::
49+
```
4950

5051
1. The name of the field to contain the generated embeddings.
5152
2. The field to contain the embeddings is a `semantic_text` field. Since no `inference_id` is provided, the default endpoint `.elser-2-elastic` for the `elasticsearch` service is used. This {{infer}} endpoint uses the [Elastic {{infer-cap}} Service (EIS)](/explore-analyze/elastic-inference/eis.md).
5253

53-
:::{tab-item} Using EIS in Cloud
54+
::::::
55+
56+
::::::{tab-item} Using EIS in Cloud
5457

5558
```{applies_to}
5659
stack: ga
5760
deployment:
5861
self: unavailable
5962
```
6063

64+
```console
6165
PUT semantic-embeddings
6266
{
6367
"mappings": {
@@ -69,13 +73,15 @@ PUT semantic-embeddings
6973
}
7074
}
7175
}
72-
:::
76+
```
7377

7478
1. The name of the field to contain the generated embeddings.
7579
2. The field to contain the embeddings is a `semantic_text` field.
7680
3. The `.elser-2-elastic` preconfigured {{infer}} endpoint for the `elasticsearch` service is used. This {{infer}} endpoint uses the [Elastic {{infer-cap}} Service (EIS)](/explore-analyze/elastic-inference/eis.md).
7781

78-
:::{tab-item} Using ML-nodes
82+
::::::
83+
84+
::::::{tab-item} Using ML-nodes
7985

8086
```console
8187
PUT semantic-embeddings
@@ -95,9 +101,9 @@ PUT semantic-embeddings
95101
2. The field to contain the embeddings is a `semantic_text` field.
96102
3. The `.elser-2-elasticsearch` preconfigured {{infer}} endpoint for the `elasticsearch` service is used. To use a different {{infer}} service, you must create an {{infer}} endpoint first using the [Create {{infer}} API](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-inference-put) and then specify it in the `semantic_text` field mapping using the `inference_id` parameter.
97103

98-
:::
104+
::::::
99105

100-
::::
106+
:::::::
101107

102108
::::{note}
103109
If you’re using web crawlers or connectors to generate indices, you have to [update the index mappings](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-put-mapping) for these indices to include the `semantic_text` field. Once the mapping is updated, you’ll need to run a full web crawl or a full connector sync. This ensures that all existing documents are reprocessed and updated with the new semantic embeddings, enabling semantic search on the updated data.

0 commit comments

Comments
 (0)