Skip to content

Commit 5e3dc5a

Browse files
Merge branch 'main' into issue-3418-adv-set
2 parents a0a2754 + 85c6655 commit 5e3dc5a

File tree

120 files changed

+1458
-847
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

120 files changed

+1458
-847
lines changed

deploy-manage/tools/snapshot-and-restore/s3-repository.md

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -377,6 +377,13 @@ AWS instances resolve S3 endpoints to a public IP. If the {{es}} instances resid
377377

378378
Instances residing in a public subnet in an AWS VPC will connect to S3 via the VPC’s internet gateway and not be bandwidth limited by the VPC’s NAT instance.
379379

380+
## Replicating objects [repository-s3-replicating-objects]
381+
382+
AWS S3 supports [replication of objects](https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html), both within a single region and across regions. However, this replication is not compatible with {{es}} snapshots.
383+
384+
The objects that {{es}} writes to the repository refer to other objects in the repository. {{es}} writes objects in a very specific order to ensure that each object only refers to objects which already exist. Likewise, {{es}} only deletes an object from the repository after it becomes unreferenced by all other objects. AWS S3 replication will apply operations to the replica repository in a different order from the order in which {{es}} applies them to the primary repository, which can cause some objects in replica repositories to refer to other objects that do not exist. This is an invalid state. It may not be possible to recover any data from a repository if it is in this state.
385+
386+
To replicate a repository's contents elsewhere, follow the [repository backup](/deploy-manage/tools/snapshot-and-restore/self-managed.md#snapshots-repository-backup) process.
380387

381388
## S3-compatible services [repository-s3-compatible-services]
382389

explore-analyze/dashboards/create-dashboard-of-panels-with-ecommerce-data.md

Lines changed: 40 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,6 @@ When you’re done, you’ll have a complete overview of the sample web logs dat
1919
:screenshot:
2020
:::
2121

22-
2322
## Add the data and create the dashboard [add-the-data-and-create-the-dashboard-advanced]
2423

2524
Add the sample eCommerce data, and create and set up the dashboard.
@@ -33,9 +32,12 @@ Add the sample eCommerce data, and create and set up the dashboard.
3332

3433
Open the visualization editor, then make sure the correct fields appear.
3534

36-
1. On the dashboard, click **Create visualization**.
37-
2. Make sure the **Kibana Sample Data eCommerce** {{data-source}} appears, then set the [time filter](../query-filter/filtering.md) to **Last 30 days**.
35+
1. Create a visualization.
36+
37+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
38+
* {applies_to}`stack: ga 9.0` Click **Create visualization**.
3839

40+
2. Make sure the **Kibana Sample Data eCommerce** {{data-source}} appears, then set the [time filter](../query-filter/filtering.md) to **Last 30 days**.
3941

4042
## Create visualizations with custom time intervals [custom-time-interval]
4143

@@ -91,14 +93,17 @@ To identify the 75th percentile of orders, add a reference line:
9193

9294
5. Click **Save and return**.
9395

94-
9596
## Analyze multiple data series [add-a-data-layer-advanced]
9697

9798
You can create visualizations with multiple data series within the same time interval, even when the series have similar configurations with minor differences.
9899

99100
To analyze multiple series, create a line chart that displays the price distribution of products sold over time:
100101

101-
1. On the dashboard, click **Create visualization**.
102+
1. Create a visualization.
103+
104+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
105+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
106+
102107
2. Open the **Visualization type** dropdown, then select **Line**.
103108
3. From the **Available fields** list, drag **products.price** to the workspace.
104109

@@ -129,14 +134,17 @@ To copy a function, you drag it to the **Add or drag-and-drop a field** area wit
129134

130135
6. Click **Save and return**.
131136

132-
133137
## Analyze multiple visualization types [add-a-data-layer]
134138

135139
With layers, you can analyze your data with multiple visualization types. When you create layered visualizations, match the data on the horizontal axis so that it uses the same scale.
136140

137141
To analyze multiple visualization types, create an area chart that displays the average order prices, then add a line chart layer that displays the number of customers.
138142

139-
1. On the dashboard, click **Create visualization**.
143+
1. Create a visualization.
144+
145+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
146+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
147+
140148
2. From the **Available fields** list, drag **products.price** to the workspace.
141149
3. In the layer pane, click **Median of products.price**.
142150

@@ -169,14 +177,17 @@ Add a layer to display the customer traffic:
169177

170178
6. Click **Save and return**.
171179

172-
173180
## Compare the change in percentage over time [percentage-stacked-area]
174181

175182
By default, the visualization editor displays time series data with stacked charts, which show how the different document sets change over time.
176183

177184
To view change over time as a percentage, create an **Area percentage** chart that displays three order categories over time:
178185

179-
1. On the dashboard, click **Create visualization**.
186+
1. Create a visualization.
187+
188+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
189+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
190+
180191
2. From the **Available fields** list, drag **Records** to the workspace.
181192
3. Open the **Visualization type** dropdown, then select **Area**.
182193

@@ -209,12 +220,15 @@ For each order category, create a filter:
209220

210221
8. Click **Save and return**.
211222

212-
213223
## View the cumulative number of products sold on weekends [view-the-cumulative-number-of-products-sold-on-weekends]
214224

215225
To determine the number of orders made only on Saturday and Sunday, create an area chart, then add it to the dashboard.
216226

217-
1. On the dashboard, click **Create visualization**.
227+
1. Create a visualization.
228+
229+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
230+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
231+
218232
2. Open the **Visualization type** dropdown, then select **Area**.
219233

220234
Configure the cumulative sum of store orders:
@@ -246,14 +260,17 @@ Filter the results to display the data for only Saturday and Sunday:
246260

247261
6. Click **Save and return**.
248262

249-
250263
## Compare time ranges [compare-time-ranges]
251264

252265
With **Time shift**, you can compare the data from different time ranges. To make sure the data displays correctly, choose a multiple of the date histogram interval when you use multiple time shifts. For example, you are unable to use a **36h** time shift for one series, and a **1d** time shift for the second series if the interval is **days**.
253266

254267
To compare two time ranges, create a line chart that compares the sales in the current week with sales from the previous week:
255268

256-
1. On the dashboard, click **Create visualization**.
269+
1. Create a visualization.
270+
271+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
272+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
273+
257274
2. Open the **Visualization type** dropdown, then select **Line**.
258275
3. From the **Available fields** list, drag **Records** to the workspace.
259276
4. To duplicate **Count of records**, drag **Count of records** to **Add or drag-and-drop a field** for **Vertical axis** in the layer pane.
@@ -275,14 +292,17 @@ To create a week-over-week comparison, shift **Count of records [1]** by one wee
275292

276293
Time shifts can be used on any metric. The special shift **previous** will show the time window preceding the currently selected one in the time picker in the top right, spanning the same duration. For example, if **Last 7 days** is selected in the time picker, **previous** will show data from 14 days ago to 7 days ago. This mode can’t be used together with date histograms.
277294

278-
279295
### Analyze the percent change between time ranges [compare-time-as-percent]
280296

281297
With **Formula**, you can analyze the percent change in your data from different time ranges.
282298

283299
To compare time range changes as a percent, create a bar chart that compares the sales in the current week with sales from the previous week:
284300

285-
1. On the dashboard, click **Create visualization**.
301+
1. Create a visualization.
302+
303+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
304+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
305+
286306
2. From the **Available fields** list, drag **Records** to the workspace.
287307
3. In the layer pane, click **Count of records**.
288308
4. Click **Formula**, then enter `count() / count(shift='1w') - 1` in the **Formula** field.
@@ -298,14 +318,17 @@ To compare time range changes as a percent, create a bar chart that compares the
298318

299319
8. Click **Save and return**.
300320

301-
302321
## Analyze the data in a table [view-customers-over-time-by-continents]
303322

304323
With tables, you can view and compare the field values, which is useful for displaying the locations of customer orders.
305324

306325
Create a date histogram table and group the customer count metric by category, such as the continent registered in user accounts:
307326

308-
1. On the dashboard, click **Create visualization**.
327+
1. Create a visualization.
328+
329+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
330+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
331+
309332
2. Open the **Visualization type** dropdown, then select **Table**.
310333
3. From the **Available fields** list, drag **customer_id** to the **Metrics** field in the layer pane.
311334

explore-analyze/dashboards/create-dashboard-of-panels-with-web-server-data.md

Lines changed: 32 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,6 @@ When you’re done, you’ll have a complete overview of the sample web logs dat
1919
:screenshot:
2020
:::
2121

22-
2322
## Add the data and create the dashboard [add-the-data-and-create-the-dashboard]
2423

2524
Add the sample web logs data, and create and set up the dashboard.
@@ -34,15 +33,18 @@ Add the sample web logs data, and create and set up the dashboard.
3433

3534
Open the visualization editor, then make sure the correct fields appear.
3635

37-
1. On the dashboard, click **Create visualization**.
36+
1. Create a visualization.
37+
38+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
39+
* {applies_to}`stack: ga 9.0` Click **Create visualization**.
40+
3841
2. Make sure the **{{kib}} Sample Data Logs** {{data-source}} appears.
3942

4043
:::{image} /explore-analyze/images/kibana-lens_dataViewDropDown_8.4.0.png
4144
:alt: Data view dropdown
4245
:screenshot:
4346
:::
4447

45-
4648
To create the visualizations in this tutorial, you’ll use the following fields:
4749

4850
* **Records**
@@ -59,7 +61,6 @@ Click a field name to view more details, such as its top values and distribution
5961
:width: 50%
6062
:::
6163

62-
6364
## Create your first visualization [view-the-number-of-website-visitors]
6465

6566
Pick a field you want to analyze, such as **clientip**. To analyze only the **clientip** field, use the **Metric** visualization to display the field as a number.
@@ -89,17 +90,20 @@ The only number function that you can use with **clientip** is **Unique count**,
8990

9091
4. Click **Save and return**.
9192

92-
9393
## View a metric over time [mixed-multiaxis]
9494

9595
There are two shortcuts you can use to view metrics over time. When you drag a numeric field to the workspace, the visualization editor adds the default time field from the {{data-source}}. When you use the **Date histogram** function, you can replace the time field by dragging the field to the workspace.
9696

9797
To visualize the **bytes** field over time:
9898

99-
1. On the dashboard, click **Create visualization**.
99+
1. Create a visualization.
100+
101+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
102+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
103+
100104
2. From the **Available fields** list, drag **bytes** to the workspace.
101105

102-
The visualization editor creates a bar chart with the **timestamp** and **Median of bytes** fields.
106+
The visualization editor creates a bar chart with the **timestamp** and **Median of bytes** fields.
103107

104108
3. To zoom in on the data, click and drag your cursor across the bars.
105109

@@ -150,15 +154,17 @@ Since you removed the axis labels, add a panel title:
150154
:width: 50%
151155
:::
152156

153-
154-
155157
## View the top values of a field [view-the-distribution-of-visitors-by-operating-system]
156158

157159
Create a visualization that displays the most frequent values of **request.keyword** on your website, ranked by the unique visitors. To create the visualization, use **Top values of request.keyword** ranked by **Unique count of clientip**, instead of being ranked by **Count of records**.
158160

159161
The **Top values** function ranks the unique values of a field by another function. The values are the most frequent when ranked by a **Count** function, and the largest when ranked by the **Sum** function.
160162

161-
1. On the dashboard, click **Create visualization**.
163+
1. Create a visualization.
164+
165+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
166+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
167+
162168
2. From the **Available fields** list, drag **clientip** to the **Vertical axis** field in the layer pane.
163169

164170
The visualization editor automatically applies the **Unique count** function. If you drag **clientip** to the workspace, the editor adds the field to the incorrect axis.
@@ -200,13 +206,15 @@ The chart labels are unable to display because the **request.keyword** field con
200206

201207
Since the table columns are labeled, you do not need to add a panel title.
202208

203-
204-
205209
## Compare a subset of documents to all documents [custom-ranges]
206210

207211
Create a proportional visualization that helps you determine if your users transfer more bytes from documents under 10KB versus documents over 10Kb.
208212

209-
1. On the dashboard, click **Create visualization**.
213+
1. Create a visualization.
214+
215+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
216+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
217+
210218
2. From the **Available fields** list, drag **bytes** to the **Vertical axis** field in the layer pane.
211219
3. In the layer pane, click **Median of bytes**.
212220
4. Click the **Sum** quick function, then click **Close**.
@@ -251,12 +259,15 @@ Add a panel title:
251259
1. Hover over the panel and click ![Settings icon](/explore-analyze/images/kibana-settings-icon-hover-action.png "kibana-settings-icon-hover-action =4%x4%"). The **Settings** flyout appears.
252260
2. In the **Title** field, enter `Sum of bytes from large requests`, then click **Apply**.
253261

254-
255262
## View the distribution of a number field [histogram]
256263

257264
The distribution of a number can help you find patterns. For example, you can analyze the website traffic per hour to find the best time for routine maintenance.
258265

259-
1. On the dashboard, click **Create visualization**.
266+
1. Create a visualization.
267+
268+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
269+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
270+
260271
2. From the **Available fields** list, drag **bytes** to **Vertical axis** field in the layer pane.
261272
3. In the layer pane, click **Median of bytes**.
262273

@@ -280,12 +291,15 @@ Add a panel title:
280291
1. Hover over the panel and click ![Settings icon](/explore-analyze/images/kibana-settings-icon-hover-action.png "kibana-settings-icon-hover-action =4%x4%"). The **Settings** flyout appears.
281292
2. In the **Title** field, enter `Website traffic`, then click **Apply**.
282293

283-
284294
## Create a multi-level chart [treemap]
285295

286296
**Table** and **Proportion** visualizations support multiple functions. For example, to create visualizations that break down the data by website traffic sources and user geography, apply the **Filters** and **Top values** functions.
287297

288-
1. On the dashboard, click **Create visualization**.
298+
1. Create a visualization.
299+
300+
* {applies_to}`stack: ga 9.2` Select **Add** > **Visualization** in the toolbar.
301+
* {applies_to}`stack: ga 9.0` Click **Create visualization** in the dashboard toolbar.
302+
289303
2. Open the **Visualization type** dropdown, then select **Treemap**.
290304
3. From the **Available fields** list, drag **Records** to the **Metric** field in the layer pane.
291305
4. In the layer pane, click **Add or drag-and-drop a field** for **Group by**.
@@ -370,4 +384,4 @@ Now that you have a complete overview of your web server data, save the dashboar
370384

371385
:::{image} /explore-analyze/images/kibana-dashboard-creator-editor.png
372386
:alt: Information panel of a dashboard showing its creator and last editor
373-
:::
387+
:::

explore-analyze/machine-learning/anomaly-detection/geographic-anomalies.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ There are a few limitations to consider before you create this type of job:
4141
1. You cannot create forecasts for {{anomaly-jobs}} that contain geographic functions.
4242
2. You cannot add [custom rules with conditions](/explore-analyze/machine-learning/anomaly-detection/ml-ad-run-jobs.md#ml-ad-rules) to detectors that use geographic functions.
4343

44-
If those limitations are acceptable, try creating an {{anomaly-job}} that uses the [`lat_long` function](/reference/data-analysis/machine-learning/ml-geo-functions.md#ml-lat-long) to analyze your own data or the sample data sets.
44+
If those limitations are acceptable, try creating an {{anomaly-job}} that uses the [`lat_long` function](/reference/machine-learning/ml-geo-functions.md#ml-lat-long) to analyze your own data or the sample data sets.
4545

4646
To create an {{anomaly-job}} that uses the `lat_long` function, navigate to the **Anomaly Detection Jobs** page in the main menu, or use the [global search field](../../find-and-organize/find-apps-and-objects.md). Then click **Create job** and select the appropriate job wizard. Alternatively, use the [create {{anomaly-jobs}} API](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-job).
4747

explore-analyze/machine-learning/anomaly-detection/ml-configuring-aggregation.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -40,8 +40,8 @@ There are a number of requirements for using aggregations in {{dfeeds}}.
4040

4141
## Recommendations [aggs-recommendations-dfeeds]
4242

43-
* When your detectors use [metric](/reference/data-analysis/machine-learning/ml-metric-functions.md) or [sum](/reference/data-analysis/machine-learning/ml-sum-functions.md) analytical functions, it’s recommended to set the `date_histogram` or `composite` aggregation interval to a tenth of the bucket span. This creates finer, more granular time buckets, which are ideal for this type of analysis.
44-
* When your detectors use [count](/reference/data-analysis/machine-learning/ml-count-functions.md) or [rare](/reference/data-analysis/machine-learning/ml-rare-functions.md) functions, set the interval to the same value as the bucket span.
43+
* When your detectors use [metric](/reference/machine-learning/ml-metric-functions.md) or [sum](/reference/machine-learning/ml-sum-functions.md) analytical functions, it’s recommended to set the `date_histogram` or `composite` aggregation interval to a tenth of the bucket span. This creates finer, more granular time buckets, which are ideal for this type of analysis.
44+
* When your detectors use [count](/reference/machine-learning/ml-count-functions.md) or [rare](/reference/machine-learning/ml-rare-functions.md) functions, set the interval to the same value as the bucket span.
4545
* If you have multiple influencers or partition fields or if your field cardinality is more than 1000, use [composite aggregations](elasticsearch://reference/aggregations/search-aggregations-bucket-composite-aggregation.md).
4646

4747
To determine the cardinality of your data, you can run searches such as:

0 commit comments

Comments
 (0)