Skip to content

Commit 8786118

Browse files
committed
Restructure data analysis section: rename to Machine Learning, move observability metrics to
reference/observability, update navigation titles for clarity
1 parent 10b2fbe commit 8786118

File tree

54 files changed

+154
-2681
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

54 files changed

+154
-2681
lines changed

explore-analyze/machine-learning/anomaly-detection/geographic-anomalies.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ There are a few limitations to consider before you create this type of job:
4141
1. You cannot create forecasts for {{anomaly-jobs}} that contain geographic functions.
4242
2. You cannot add [custom rules with conditions](/explore-analyze/machine-learning/anomaly-detection/ml-ad-run-jobs.md#ml-ad-rules) to detectors that use geographic functions.
4343

44-
If those limitations are acceptable, try creating an {{anomaly-job}} that uses the [`lat_long` function](/reference/data-analysis/machine-learning/ml-geo-functions.md#ml-lat-long) to analyze your own data or the sample data sets.
44+
If those limitations are acceptable, try creating an {{anomaly-job}} that uses the [`lat_long` function](/reference/machine-learning/ml-geo-functions.md#ml-lat-long) to analyze your own data or the sample data sets.
4545

4646
To create an {{anomaly-job}} that uses the `lat_long` function, navigate to the **Anomaly Detection Jobs** page in the main menu, or use the [global search field](../../find-and-organize/find-apps-and-objects.md). Then click **Create job** and select the appropriate job wizard. Alternatively, use the [create {{anomaly-jobs}} API](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-job).
4747

explore-analyze/machine-learning/anomaly-detection/ml-configuring-aggregation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ There are a number of requirements for using aggregations in {{dfeeds}}.
4141
## Recommendations [aggs-recommendations-dfeeds]
4242

4343
* When your detectors use [metric](/reference/data-analysis/machine-learning/ml-metric-functions.md) or [sum](/reference/data-analysis/machine-learning/ml-sum-functions.md) analytical functions, it’s recommended to set the `date_histogram` or `composite` aggregation interval to a tenth of the bucket span. This creates finer, more granular time buckets, which are ideal for this type of analysis.
44-
* When your detectors use [count](/reference/data-analysis/machine-learning/ml-count-functions.md) or [rare](/reference/data-analysis/machine-learning/ml-rare-functions.md) functions, set the interval to the same value as the bucket span.
44+
* When your detectors use [count](/reference/data-analysis/machine-learning/ml-count-functions.md) or [rare](/reference/machine-learning/ml-rare-functions.md) functions, set the interval to the same value as the bucket span.
4545
* If you have multiple influencers or partition fields or if your field cardinality is more than 1000, use [composite aggregations](elasticsearch://reference/aggregations/search-aggregations-bucket-composite-aggregation.md).
4646

4747
To determine the cardinality of your data, you can run searches such as:

explore-analyze/machine-learning/anomaly-detection/ml-configuring-categories.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ products:
1010

1111
# Detecting anomalous categories of data [ml-configuring-categories]
1212

13-
Categorization is a {{ml}} process that tokenizes a text field, clusters similar data together, and classifies it into categories. It works best on machine-written messages and application output that typically consist of repeated elements. [Categorization jobs](ml-anomaly-detection-job-types.md#categorization-jobs) enable you to find anomalous behavior in your categorized data. Categorization is not natural language processing (NLP). When you create a categorization {{anomaly-job}}, the {{ml}} model learns what volume and pattern is normal for each category over time. You can then detect anomalies and surface rare events or unusual types of messages by using [count](/reference/data-analysis/machine-learning/ml-count-functions.md) or [rare](/reference/data-analysis/machine-learning/ml-rare-functions.md) functions. Categorization works well on finite set of possible messages, for example:
13+
Categorization is a {{ml}} process that tokenizes a text field, clusters similar data together, and classifies it into categories. It works best on machine-written messages and application output that typically consist of repeated elements. [Categorization jobs](ml-anomaly-detection-job-types.md#categorization-jobs) enable you to find anomalous behavior in your categorized data. Categorization is not natural language processing (NLP). When you create a categorization {{anomaly-job}}, the {{ml}} model learns what volume and pattern is normal for each category over time. You can then detect anomalies and surface rare events or unusual types of messages by using [count](/reference/data-analysis/machine-learning/ml-count-functions.md) or [rare](/reference/machine-learning/ml-rare-functions.md) functions. Categorization works well on finite set of possible messages, for example:
1414

1515
```js
1616
{"@timestamp":1549596476000,

explore-analyze/machine-learning/anomaly-detection/ml-configuring-transform.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -382,7 +382,7 @@ PUT _ml/anomaly_detectors/test3
382382
GET _ml/datafeeds/datafeed-test3/_preview
383383
```
384384

385-
In {{es}}, location data can be stored in `geo_point` fields but this data type is not supported natively in {{ml}} analytics. This example of a runtime field transforms the data into an appropriate format. For more information, see [Geographic functions](/reference/data-analysis/machine-learning/ml-geo-functions.md).
385+
In {{es}}, location data can be stored in `geo_point` fields but this data type is not supported natively in {{ml}} analytics. This example of a runtime field transforms the data into an appropriate format. For more information, see [Geographic functions](/reference/machine-learning/ml-geo-functions.md).
386386

387387
The preview {{dfeed}} API returns the following results, which show that `41.44` and `90.5` have been combined into "41.44,90.5":
388388

explore-analyze/machine-learning/anomaly-detection/ml-functions.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,6 @@ If your data is sparse, there may be gaps in the data which means you might have
2525
* [Geographic functions](/reference/data-analysis/machine-learning/ml-geo-functions.md)
2626
* [Information content functions](/reference/data-analysis/machine-learning/ml-info-functions.md)
2727
* [Metric functions](/reference/data-analysis/machine-learning/ml-metric-functions.md)
28-
* [Rare functions](/reference/data-analysis/machine-learning/ml-rare-functions.md)
28+
* [Rare functions](/reference/machine-learning/ml-rare-functions.md)
2929
* [Sum functions](/reference/data-analysis/machine-learning/ml-sum-functions.md)
3030
* [Time functions](/reference/data-analysis/machine-learning/ml-time-functions.md)

explore-analyze/machine-learning/anomaly-detection/ml-getting-started.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -315,6 +315,6 @@ If you’re now thinking about where {{anomaly-detect}} can be most impactful fo
315315

316316
In general, it is a good idea to start with single metric {{anomaly-jobs}} for your key performance indicators. After you examine these simple analysis results, you will have a better idea of what the influencers might be. You can create multi-metric jobs and split the data or create more complex analysis functions as necessary. For examples of more complicated configuration options, see [Examples](/explore-analyze/machine-learning/anomaly-detection/anomaly-how-tos.md).
317317

318-
If you want to find more sample jobs, see [Supplied configurations](ootb-ml-jobs.md). In particular, there are sample jobs for [Apache](/reference/data-analysis/machine-learning/ootb-ml-jobs-apache.md) and [Nginx](/reference/data-analysis/machine-learning/ootb-ml-jobs-nginx.md) that are quite similar to the examples in this tutorial.
318+
If you want to find more sample jobs, see [Supplied configurations](ootb-ml-jobs.md). In particular, there are sample jobs for [Apache](/reference/data-analysis/machine-learning/ootb-ml-jobs-apache.md) and [Nginx](/reference/machine-learning/ootb-ml-jobs-nginx.md) that are quite similar to the examples in this tutorial.
319319

320320
If you encounter problems, we’re here to help. If you are an existing Elastic customer with a support contract, create a ticket in the [Elastic Support portal](http://support.elastic.co). Or post in the [Elastic forum](https://discuss.elastic.co/).

explore-analyze/machine-learning/anomaly-detection/ml-limitations.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -153,8 +153,8 @@ The charts can also look odd in circumstances where there is very little data to
153153
| varp, high_varp, low_varp | [Varp, high_varp, low_varp](/reference/data-analysis/machine-learning/ml-metric-functions.md#ml-metric-varp) | yes (only if model plot is enabled) |
154154
| lat_long | [Lat_long](/reference/data-analysis/machine-learning/ml-geo-functions.md#ml-lat-long) | no (but map is displayed in the Anomaly Explorer) |
155155
| info_content, high_info_content, low_info_content | [Info_content, High_info_content, Low_info_content](/reference/data-analysis/machine-learning/ml-info-functions.md#ml-info-content) | yes (only if model plot is enabled) |
156-
| rare | [Rare](/reference/data-analysis/machine-learning/ml-rare-functions.md#ml-rare) | yes |
157-
| freq_rare | [Freq_rare](/reference/data-analysis/machine-learning/ml-rare-functions.md#ml-freq-rare) | no |
156+
| rare | [Rare](/reference/machine-learning/ml-rare-functions.md#ml-rare) | yes |
157+
| freq_rare | [Freq_rare](/reference/machine-learning/ml-rare-functions.md#ml-freq-rare) | no |
158158
| time_of_day, time_of_week | [Time functions](/reference/data-analysis/machine-learning/ml-time-functions.md) | no |
159159

160160
### Jobs created in {{kib}} must use {{dfeeds}} [_jobs_created_in_kib_must_use_dfeeds]

explore-analyze/machine-learning/anomaly-detection/ootb-ml-jobs.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ products:
1717
* [APM](/reference/data-analysis/machine-learning/ootb-ml-jobs-apm.md)
1818
* [{{auditbeat}}](/reference/data-analysis/machine-learning/ootb-ml-jobs-auditbeat.md)
1919
* [Logs](/reference/data-analysis/machine-learning/ootb-ml-jobs-logs-ui.md)
20-
* [{{metricbeat}}](/reference/data-analysis/machine-learning/ootb-ml-jobs-metricbeat.md)
20+
* [{{metricbeat}}](/reference/machine-learning/ootb-ml-jobs-metricbeat.md)
2121
* [Metrics](/reference/data-analysis/machine-learning/ootb-ml-jobs-metrics-ui.md)
2222
* [Nginx](/reference/data-analysis/machine-learning/ootb-ml-jobs-nginx.md)
2323
* [Security](/reference/data-analysis/machine-learning/ootb-ml-jobs-siem.md)

redirects.yml

Lines changed: 32 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -519,5 +519,37 @@ redirects:
519519
# Search sessions becoming background search
520520
'explore-analyze/discover/search-sessions.md': 'explore-analyze/discover/background-search.md'
521521

522+
# Deduplicate canvas function reference
523+
'reference/data-analysis/kibana/canvas-functions.md': 'explore-analyze/visualize/canvas/canvas-function-reference.md'
524+
'reference/data-analysis/kibana/tinymath-functions.md': 'explore-analyze/visualize/canvas/canvas-tinymath-functions.md'
525+
526+
# Related to data-analysis restructure - moved observability metrics to reference/observability
527+
'reference/data-analysis/observability/index.md': 'reference/observability/metrics-reference.md'
528+
'reference/data-analysis/observability/observability-host-metrics.md': 'reference/observability/observability-host-metrics.md'
529+
'reference/data-analysis/observability/observability-container-metrics.md': 'reference/observability/observability-container-metrics.md'
530+
'reference/data-analysis/observability/observability-kubernetes-pod-metrics.md': 'reference/observability/observability-kubernetes-pod-metrics.md'
531+
'reference/data-analysis/observability/observability-aws-metrics.md': 'reference/observability/observability-aws-metrics.md'
532+
533+
# Renamed data-analysis to machine-learning
534+
'reference/data-analysis/index.md': 'reference/machine-learning/index.md'
535+
'reference/data-analysis/machine-learning/supplied-anomaly-detection-configurations.md': 'reference/machine-learning/supplied-anomaly-detection-configurations.md'
536+
'reference/data-analysis/machine-learning/machine-learning-functions.md': 'reference/machine-learning/machine-learning-functions.md'
537+
'reference/data-analysis/machine-learning/ml-count-functions.md': 'reference/machine-learning/ml-count-functions.md'
538+
'reference/data-analysis/machine-learning/ml-geo-functions.md': 'reference/machine-learning/ml-geo-functions.md'
539+
'reference/data-analysis/machine-learning/ml-info-functions.md': 'reference/machine-learning/ml-info-functions.md'
540+
'reference/data-analysis/machine-learning/ml-metric-functions.md': 'reference/machine-learning/ml-metric-functions.md'
541+
'reference/data-analysis/machine-learning/ml-rare-functions.md': 'reference/machine-learning/ml-rare-functions.md'
542+
'reference/data-analysis/machine-learning/ml-sum-functions.md': 'reference/machine-learning/ml-sum-functions.md'
543+
'reference/data-analysis/machine-learning/ml-time-functions.md': 'reference/machine-learning/ml-time-functions.md'
544+
'reference/data-analysis/machine-learning/ootb-ml-jobs-apache.md': 'reference/machine-learning/ootb-ml-jobs-apache.md'
545+
'reference/data-analysis/machine-learning/ootb-ml-jobs-apm.md': 'reference/machine-learning/ootb-ml-jobs-apm.md'
546+
'reference/data-analysis/machine-learning/ootb-ml-jobs-auditbeat.md': 'reference/machine-learning/ootb-ml-jobs-auditbeat.md'
547+
'reference/data-analysis/machine-learning/ootb-ml-jobs-logs-ui.md': 'reference/machine-learning/ootb-ml-jobs-logs-ui.md'
548+
'reference/data-analysis/machine-learning/ootb-ml-jobs-metricbeat.md': 'reference/machine-learning/ootb-ml-jobs-metricbeat.md'
549+
'reference/data-analysis/machine-learning/ootb-ml-jobs-metrics-ui.md': 'reference/machine-learning/ootb-ml-jobs-metrics-ui.md'
550+
'reference/data-analysis/machine-learning/ootb-ml-jobs-nginx.md': 'reference/machine-learning/ootb-ml-jobs-nginx.md'
551+
'reference/data-analysis/machine-learning/ootb-ml-jobs-siem.md': 'reference/machine-learning/ootb-ml-jobs-siem.md'
552+
'reference/data-analysis/machine-learning/ootb-ml-jobs-uptime.md': 'reference/machine-learning/ootb-ml-jobs-uptime.md'
553+
522554

523555

reference/data-analysis/index.md

Lines changed: 0 additions & 12 deletions
This file was deleted.

0 commit comments

Comments
 (0)