diff --git a/solutions/search/semantic-search/semantic-search-semantic-text.md b/solutions/search/semantic-search/semantic-search-semantic-text.md index a5254793dc..4a33c19b26 100644 --- a/solutions/search/semantic-search/semantic-search-semantic-text.md +++ b/solutions/search/semantic-search/semantic-search-semantic-text.md @@ -110,15 +110,16 @@ After the data has been indexed with the embeddings, you can query the data usin :::{tab-item} Query DSL :sync: dsl -The Query DSL approach uses the `semantic` query type with the `semantic_text` field: +The Query DSL approach uses the [`match` query](elasticsearch://reference/query-languages/query-dsl/query-dsl-match-query.md) type with the `semantic_text` field: ```esql GET semantic-embeddings/_search { "query": { - "semantic": { - "field": "content", <1> - "query": "What causes muscle soreness after running?" <2> + "match": { + "content": { <1> + "query": "What causes muscle soreness after running?" <2> + } } } }