You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
returnawaitthis.transport.request({ path, method, querystring, body, meta },options)
3359
+
}
3360
+
3251
3361
/**
3252
3362
* Update data stream options. Update the data stream options of the specified data streams.
3253
3363
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/master/index.html | Elasticsearch API documentation}
@@ -3729,13 +3839,13 @@ export default class Indices {
3729
3839
}
3730
3840
3731
3841
/**
3732
-
* Removes a blockfrom an index.
3733
-
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/master/index-modules-blocks.html | Elasticsearch API documentation}
3842
+
* Remove an index block. Remove an index block from an index. Index blocks limit the operations allowed on an index by blocking specific operation types.
3843
+
* @see {@link https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-remove-block | Elasticsearch API documentation}
Copy file name to clipboardExpand all lines: src/api/api/inference.ts
+125-1Lines changed: 125 additions & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -127,6 +127,14 @@ export default class Inference {
127
127
],
128
128
query: []
129
129
},
130
+
'inference.put_amazonsagemaker': {
131
+
path: [
132
+
'task_type',
133
+
'amazonsagemaker_inference_id'
134
+
],
135
+
body: [],
136
+
query: []
137
+
},
130
138
'inference.put_anthropic': {
131
139
path: [
132
140
'task_type',
@@ -179,6 +187,18 @@ export default class Inference {
179
187
],
180
188
query: []
181
189
},
190
+
'inference.put_deepseek': {
191
+
path: [
192
+
'task_type',
193
+
'deepseek_inference_id'
194
+
],
195
+
body: [
196
+
'chunking_settings',
197
+
'service',
198
+
'service_settings'
199
+
],
200
+
query: []
201
+
},
182
202
'inference.put_elasticsearch': {
183
203
path: [
184
204
'task_type',
@@ -644,7 +664,7 @@ export default class Inference {
644
664
}
645
665
646
666
/**
647
-
* Create an inference endpoint. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs. The following integrations are available through the inference API. You can find the available task types next to the integration name: * AlibabaCloud AI Search (`completion`, `rerank`, `sparse_embedding`, `text_embedding`) * Amazon Bedrock (`completion`, `text_embedding`) * Anthropic (`completion`) * Azure AI Studio (`completion`, `text_embedding`) * Azure OpenAI (`completion`, `text_embedding`) * Cohere (`completion`, `rerank`, `text_embedding`) * Elasticsearch (`rerank`, `sparse_embedding`, `text_embedding` - this service is for built-in models and models uploaded through Eland) * ELSER (`sparse_embedding`) * Google AI Studio (`completion`, `text_embedding`) * Google Vertex AI (`rerank`, `text_embedding`) * Hugging Face (`chat_completion`, `completion`, `rerank`, `text_embedding`) * Mistral (`chat_completion`, `completion`, `text_embedding`) * OpenAI (`chat_completion`, `completion`, `text_embedding`) * VoyageAI (`text_embedding`, `rerank`) * Watsonx inference integration (`text_embedding`) * JinaAI (`text_embedding`, `rerank`)
667
+
* Create an inference endpoint. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs. The following integrations are available through the inference API. You can find the available task types next to the integration name: * AlibabaCloud AI Search (`completion`, `rerank`, `sparse_embedding`, `text_embedding`) * Amazon Bedrock (`completion`, `text_embedding`) * Anthropic (`completion`) * Azure AI Studio (`completion`, `text_embedding`) * Azure OpenAI (`completion`, `text_embedding`) * Cohere (`completion`, `rerank`, `text_embedding`) * DeepSeek (`completion`, `chat_completion`) * Elasticsearch (`rerank`, `sparse_embedding`, `text_embedding` - this service is for built-in models and models uploaded through Eland) * ELSER (`sparse_embedding`) * Google AI Studio (`completion`, `text_embedding`) * Google Vertex AI (`rerank`, `text_embedding`) * Hugging Face (`chat_completion`, `completion`, `rerank`, `text_embedding`) * Mistral (`chat_completion`, `completion`, `text_embedding`) * OpenAI (`chat_completion`, `completion`, `text_embedding`) * VoyageAI (`text_embedding`, `rerank`) * Watsonx inference integration (`text_embedding`) * JinaAI (`text_embedding`, `rerank`)
648
668
* @see {@link https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-inference-put | Elasticsearch API documentation}
returnawaitthis.transport.request({ path, method, querystring, body, meta },options)
1171
+
}
1172
+
1049
1173
/**
1050
1174
* Create an Elasticsearch inference endpoint. Create an inference endpoint to perform an inference task with the `elasticsearch` service. > info > Your Elasticsearch deployment contains preconfigured ELSER and E5 inference endpoints, you only need to create the enpoints using the API if you want to customize the settings. If you use the ELSER or the E5 model through the `elasticsearch` service, the API request will automatically download and deploy the model if it isn't downloaded yet. > info > You might see a 502 bad gateway error in the response when using the Kibana Console. This error usually just reflects a timeout, while the model downloads in the background. You can check the download progress in the Machine Learning UI. If using the Python client, you can set the timeout parameter to a higher value. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
1051
1175
* @see {@link https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-inference-put-elasticsearch | Elasticsearch API documentation}
0 commit comments