@@ -22,11 +22,43 @@ import { PropertyBase } from './Property'
2222
2323export  class  DenseVectorProperty  extends  PropertyBase  { 
2424  type : 'dense_vector' 
25-   element_type ?: DenseVectorElementType 
25+   /** 
26+    * Number of vector dimensions. Can't exceed `4096`. If `dims` is not specified, it will be set to the length of 
27+    * the first vector added to the field. 
28+    */ 
2629  dims ?: integer 
27-   similarity ?: DenseVectorSimilarity 
30+   /** 
31+    * The data type used to encode vectors. The supported data types are `float` (default), `byte`, and `bit`. 
32+    * @server_default  float 
33+    */ 
34+   element_type ?: DenseVectorElementType 
35+   /** 
36+    * If `true`, you can search this field using the kNN search API. 
37+    * @server_default  true 
38+    */ 
2839  index ?: boolean 
40+   /** 
41+    * An optional section that configures the kNN indexing algorithm. The HNSW algorithm has two internal parameters 
42+    * that influence how the data structure is built. These can be adjusted to improve the accuracy of results, at the 
43+    * expense of slower indexing speed. 
44+    * 
45+    * This parameter can only be specified when `index` is `true`. 
46+    */ 
2947  index_options ?: DenseVectorIndexOptions 
48+   /** 
49+    * The vector similarity metric to use in kNN search. 
50+    * 
51+    * Documents are ranked by their vector field's similarity to the query vector. The `_score` of each document will 
52+    * be derived from the similarity, in a way that ensures scores are positive and that a larger score corresponds 
53+    * to a higher ranking. 
54+    * 
55+    * Defaults to `l2_norm` when `element_type` is `bit` otherwise defaults to `cosine`. 
56+    * 
57+    * `bit` vectors only support `l2_norm` as their similarity metric. 
58+    * 
59+    * This parameter can only be specified when `index` is `true`. 
60+    */ 
61+   similarity ?: DenseVectorSimilarity 
3062} 
3163
3264export  enum  DenseVectorElementType  { 
@@ -95,10 +127,38 @@ export enum DenseVectorSimilarity {
95127} 
96128
97129export  class  DenseVectorIndexOptions  { 
98-   type : DenseVectorIndexOptionsType 
99-   m ?: integer 
100-   ef_construction ?: integer 
130+   /** 
131+    * The confidence interval to use when quantizing the vectors. Can be any value between and including `0.90` and 
132+    * `1.0` or exactly `0`. When the value is `0`, this indicates that dynamic quantiles should be calculated for 
133+    * optimized quantization. When between `0.90` and `1.0`, this value restricts the values used when calculating 
134+    * the quantization thresholds. 
135+    * 
136+    * For example, a value of `0.95` will only use the middle `95%` of the values when calculating the quantization 
137+    * thresholds (e.g. the highest and lowest `2.5%` of values will be ignored). 
138+    * 
139+    * Defaults to `1/(dims + 1)` for `int8` quantized vectors and `0` for `int4` for dynamic quantile calculation. 
140+    * 
141+    * Only applicable to `int8_hnsw`, `int4_hnsw`, `int8_flat`, and `int4_flat` index types. 
142+    */ 
101143  confidence_interval ?: float 
144+   /** 
145+    * The number of candidates to track while assembling the list of nearest neighbors for each new node. 
146+    * 
147+    * Only applicable to `hnsw`, `int8_hnsw`, and `int4_hnsw` index types. 
148+    * @server_default  100 
149+    */ 
150+   ef_construction ?: integer 
151+   /** 
152+    * The number of neighbors each node will be connected to in the HNSW graph. 
153+    * 
154+    * Only applicable to `hnsw`, `int8_hnsw`, and `int4_hnsw` index types. 
155+    * @server_default  16 
156+    */ 
157+   m ?: integer 
158+   /** 
159+    * The type of kNN algorithm to use. 
160+    */ 
161+   type : DenseVectorIndexOptionsType 
102162} 
103163
104164export  enum  DenseVectorIndexOptionsType  { 
0 commit comments