diff --git a/compiler/src/model/build-model.ts b/compiler/src/model/build-model.ts index 400a0f008b..96bb7f511b 100644 --- a/compiler/src/model/build-model.ts +++ b/compiler/src/model/build-model.ts @@ -383,18 +383,7 @@ function compileClassOrInterfaceDeclaration (declaration: ClassDeclaration | Int if (property.valueOf.kind === 'instance_of' && property.valueOf.type.name === 'Void') { type.body = { kind: 'no_body' } } else { - const tags = parseJsDocTags((member as PropertySignature).getJsDocs()) - // TODO: Enable this after adding the missing codegen names. - // assert( - // member as Node, - // tags.codegen_name != null, - // 'You should configure a body @codegen_name' - // ) - type.body = { - kind: 'value', - value: property.valueOf, - codegenName: tags.codegen_name - } + type.body = { kind: 'value', value: property.valueOf } } } else { type.body = { kind: 'properties', properties: property.properties } diff --git a/output/openapi/elasticsearch-openapi.json b/output/openapi/elasticsearch-openapi.json index bb69ab5594..15f2fbc5a3 100644 --- a/output/openapi/elasticsearch-openapi.json +++ b/output/openapi/elasticsearch-openapi.json @@ -22503,7 +22503,7 @@ "MlEvaluateDataFrameRequestExample4": { "summary": "Regression example 1", "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "summary": "Regression example 2", @@ -114166,7 +114166,7 @@ "MultiTermVectorsRequestExample2": { "summary": "Simplified syntax", "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" }, "MultiTermVectorsRequestExample3": { "summary": "Artificial documents", diff --git a/output/openapi/elasticsearch-serverless-openapi.json b/output/openapi/elasticsearch-serverless-openapi.json index dcf6e9ea06..e5d91b171f 100644 --- a/output/openapi/elasticsearch-serverless-openapi.json +++ b/output/openapi/elasticsearch-serverless-openapi.json @@ -13035,7 +13035,7 @@ "MlEvaluateDataFrameRequestExample4": { "summary": "Regression example 1", "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "summary": "Regression example 2", @@ -66949,7 +66949,7 @@ "MultiTermVectorsRequestExample2": { "summary": "Simplified syntax", "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" }, "MultiTermVectorsRequestExample3": { "summary": "Artificial documents", diff --git a/output/schema/schema-serverless.json b/output/schema/schema-serverless.json index 4edfa5e382..1b70b67f55 100644 --- a/output/schema/schema-serverless.json +++ b/output/schema/schema-serverless.json @@ -19541,7 +19541,6 @@ }, { "body": { - "codegenName": "data", "kind": "value", "value": { "kind": "instance_of", @@ -21045,7 +21044,6 @@ }, { "body": { - "codegenName": "source", "kind": "value", "value": { "kind": "instance_of", @@ -23429,7 +23427,6 @@ }, { "body": { - "codegenName": "indices", "kind": "value", "value": { "key": { @@ -23564,7 +23561,6 @@ }, { "body": { - "codegenName": "aliases", "kind": "value", "value": { "key": { @@ -24094,7 +24090,6 @@ }, { "body": { - "codegenName": "mappings", "kind": "value", "value": { "key": { @@ -24264,7 +24259,6 @@ }, { "body": { - "codegenName": "settings", "kind": "value", "value": { "key": { @@ -28535,7 +28529,6 @@ }, { "body": { - "codegenName": "pipelines", "kind": "value", "value": { "key": { @@ -29099,7 +29092,6 @@ }, { "body": { - "codegenName": "pipelines", "kind": "value", "value": { "key": { @@ -30482,7 +30474,7 @@ "MlEvaluateDataFrameRequestExample4": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", "summary": "Regression example 1", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the training error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the training split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", @@ -32825,7 +32817,6 @@ }, { "body": { - "codegenName": "documents", "kind": "value", "value": { "kind": "array_of", @@ -37816,7 +37807,7 @@ "MultiTermVectorsRequestExample2": { "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", "summary": "Simplified syntax", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" }, "MultiTermVectorsRequestExample3": { "description": "Run `POST /_mtermvectors` to generate term vectors for artificial documents provided in the body of the request. The mapping used is determined by the specified `_index`.\n", @@ -41564,7 +41555,6 @@ }, { "body": { - "codegenName": "analytics", "kind": "value", "value": { "key": { @@ -42331,7 +42321,6 @@ }, { "body": { - "codegenName": "vector_tiles", "kind": "value", "value": { "kind": "instance_of", diff --git a/output/schema/schema.json b/output/schema/schema.json index 42539a3c59..5f6695fc08 100644 --- a/output/schema/schema.json +++ b/output/schema/schema.json @@ -27860,7 +27860,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "source", "value": { "kind": "instance_of", "type": { @@ -31956,7 +31955,7 @@ "MultiTermVectorsRequestExample2": { "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", "summary": "Simplified syntax", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" }, "MultiTermVectorsRequestExample3": { "description": "Run `POST /_mtermvectors` to generate term vectors for artificial documents provided in the body of the request. The mapping used is determined by the specified `_index`.\n", @@ -42570,7 +42569,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "vector_tiles", "value": { "kind": "instance_of", "type": { @@ -113864,7 +113862,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "infos", "value": { "kind": "dictionary_of", "key": { @@ -124987,7 +124984,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "data", "value": { "kind": "instance_of", "type": { @@ -128935,7 +128931,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "lifecycles", "value": { "kind": "dictionary_of", "key": { @@ -137127,7 +137122,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "disk_usage", "value": { "kind": "user_defined_value" } @@ -137203,7 +137197,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "result", "value": { "kind": "user_defined_value" } @@ -138829,7 +138822,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "indices", "value": { "kind": "dictionary_of", "key": { @@ -138996,7 +138988,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "aliases", "value": { "kind": "dictionary_of", "key": { @@ -139598,7 +139589,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "field_mappings", "value": { "kind": "dictionary_of", "key": { @@ -139972,7 +139962,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "mappings", "value": { "kind": "dictionary_of", "key": { @@ -140391,7 +140380,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "settings", "value": { "kind": "dictionary_of", "key": { @@ -140497,7 +140485,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "templates", "value": { "kind": "dictionary_of", "key": { @@ -141062,7 +141049,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "result", "value": { "kind": "user_defined_value" } @@ -143058,7 +143044,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "statuses", "value": { "kind": "dictionary_of", "key": { @@ -143932,7 +143917,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "infos", "value": { "kind": "dictionary_of", "key": { @@ -157751,7 +157735,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "pipelines", "value": { "kind": "dictionary_of", "key": { @@ -159781,7 +159764,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "pipelines", "value": { "kind": "dictionary_of", "key": { @@ -175019,7 +175001,7 @@ "MlEvaluateDataFrameRequestExample4": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", "summary": "Regression example 1", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the training error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the training split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", @@ -180205,7 +180187,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "documents", "value": { "kind": "array_of", "value": { @@ -196845,7 +196826,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "capabilities", "value": { "kind": "dictionary_of", "key": { @@ -197081,7 +197061,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "capabilities", "value": { "kind": "dictionary_of", "key": { @@ -198189,7 +198168,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "analytics", "value": { "kind": "dictionary_of", "key": { @@ -199127,7 +199105,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "result", "value": { "kind": "user_defined_value" } @@ -204654,7 +204631,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "result", "value": { "kind": "dictionary_of", "key": { @@ -205840,7 +205816,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "privileges", "value": { "kind": "dictionary_of", "key": { @@ -205923,7 +205898,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "roles", "value": { "kind": "dictionary_of", "key": { @@ -206206,7 +206180,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "role_mappings", "value": { "kind": "dictionary_of", "key": { @@ -206290,7 +206263,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "service_accoutns", "value": { "kind": "dictionary_of", "key": { @@ -207056,7 +207028,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "users", "value": { "kind": "dictionary_of", "key": { @@ -209227,7 +209198,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "result", "value": { "kind": "dictionary_of", "key": { @@ -214933,7 +214903,6 @@ "kind": "response", "body": { "kind": "value", - "codegenName": "lifecycles", "value": { "kind": "dictionary_of", "key": {