diff --git a/output/openapi/elasticsearch-openapi.json b/output/openapi/elasticsearch-openapi.json index a3dda9d90e..797ad4c8e2 100644 --- a/output/openapi/elasticsearch-openapi.json +++ b/output/openapi/elasticsearch-openapi.json @@ -22503,7 +22503,7 @@ "MlEvaluateDataFrameRequestExample4": { "summary": "Regression example 1", "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "summary": "Regression example 2", @@ -114167,7 +114167,7 @@ "MultiTermVectorsRequestExample2": { "summary": "Simplified syntax", "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" }, "MultiTermVectorsRequestExample3": { "summary": "Artificial documents", diff --git a/output/openapi/elasticsearch-serverless-openapi.json b/output/openapi/elasticsearch-serverless-openapi.json index e4e6b8fe61..556bd04a4a 100644 --- a/output/openapi/elasticsearch-serverless-openapi.json +++ b/output/openapi/elasticsearch-serverless-openapi.json @@ -13035,7 +13035,7 @@ "MlEvaluateDataFrameRequestExample4": { "summary": "Regression example 1", "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "summary": "Regression example 2", @@ -66950,7 +66950,7 @@ "MultiTermVectorsRequestExample2": { "summary": "Simplified syntax", "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" }, "MultiTermVectorsRequestExample3": { "summary": "Artificial documents", diff --git a/output/schema/schema-serverless.json b/output/schema/schema-serverless.json index cb4d76ffb8..05bdcd6380 100644 --- a/output/schema/schema-serverless.json +++ b/output/schema/schema-serverless.json @@ -30475,7 +30475,7 @@ "MlEvaluateDataFrameRequestExample4": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", "summary": "Regression example 1", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the training error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the training split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", @@ -37808,7 +37808,7 @@ "MultiTermVectorsRequestExample2": { "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", "summary": "Simplified syntax", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" }, "MultiTermVectorsRequestExample3": { "description": "Run `POST /_mtermvectors` to generate term vectors for artificial documents provided in the body of the request. The mapping used is determined by the specified `_index`.\n", diff --git a/output/schema/schema.json b/output/schema/schema.json index 46e48bb6f8..2efef2cf3e 100644 --- a/output/schema/schema.json +++ b/output/schema/schema.json @@ -31983,7 +31983,7 @@ "MultiTermVectorsRequestExample2": { "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", "summary": "Simplified syntax", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" }, "MultiTermVectorsRequestExample3": { "description": "Run `POST /_mtermvectors` to generate term vectors for artificial documents provided in the body of the request. The mapping used is determined by the specified `_index`.\n", @@ -175030,7 +175030,7 @@ "MlEvaluateDataFrameRequestExample4": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", "summary": "Regression example 1", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the training error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the training split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n",