@@ -22,11 +22,13 @@ experimental[]
22
22
[[ml-evaluate-dfanalytics-prereq]]
23
23
== {api-prereq-title}
24
24
25
- If the {es} {security-features} are enabled, you must have the following privileges:
25
+ If the {es} {security-features} are enabled, you must have the following
26
+ privileges:
26
27
27
28
* cluster: `monitor_ml`
28
29
29
- For more information, see <<security-privileges>> and {ml-docs-setup-privileges}.
30
+ For more information, see <<security-privileges>> and
31
+ {ml-docs-setup-privileges}.
30
32
31
33
32
34
[[ml-evaluate-dfanalytics-desc]]
@@ -122,24 +124,40 @@ which outputs a prediction of values.
122
124
in other words the results of the {regression} analysis.
123
125
124
126
`metrics`::
125
- (Optional, object) Specifies the metrics that are used for the evaluation.
127
+ (Optional, object) Specifies the metrics that are used for the evaluation. For
128
+ more information on `mse`, `msle`, and `huber`, consult
129
+ https://github.com/elastic/examples/tree/master/Machine%20Learning/Regression%20Loss%20Functions[the Jupyter notebook on regression loss functions].
126
130
Available metrics:
127
131
128
132
`mse`:::
129
- (Optional, object) Average squared difference between the predicted values and the actual (`ground truth`) value.
130
- For more information, read {wikipedia}/Mean_squared_error[this wiki article].
133
+ (Optional, object) Average squared difference between the predicted values
134
+ and the actual (`ground truth`) value. For more information, read
135
+ {wikipedia}/Mean_squared_error[this wiki article].
131
136
132
137
`msle`:::
133
- (Optional, object) Average squared difference between the logarithm of the predicted values and the logarithm of the actual
134
- (`ground truth`) value.
138
+ (Optional, object) Average squared difference between the logarithm of the
139
+ predicted values and the logarithm of the actual (`ground truth`) value.
140
+
141
+ `offset`::::
142
+ (Optional, double) Defines the transition point at which you switch from
143
+ minimizing quadratic error to minimizing quadratic log error. Defaults to
144
+ `1`.
135
145
136
146
`huber`:::
137
147
(Optional, object) Pseudo Huber loss function.
138
- For more information, read {wikipedia}/Huber_loss#Pseudo-Huber_loss_function[this wiki article].
148
+ For more information, read
149
+ {wikipedia}/Huber_loss#Pseudo-Huber_loss_function[this wiki article].
150
+
151
+ `delta`::::
152
+ (Optional, double) Approximates 1/2 (prediction - actual)^2^ for values
153
+ much less than delta and approximates a straight line with slope delta for
154
+ values much larger than delta. Defaults to `1`. Delta needs to be greater
155
+ than `0`.
139
156
140
157
`r_squared`:::
141
- (Optional, object) Proportion of the variance in the dependent variable that is predictable from the independent variables.
142
- For more information, read {wikipedia}/Coefficient_of_determination[this wiki article].
158
+ (Optional, object) Proportion of the variance in the dependent variable that
159
+ is predictable from the independent variables. For more information, read
160
+ {wikipedia}/Coefficient_of_determination[this wiki article].
143
161
144
162
145
163
0 commit comments