Skip to content

Commit 199d6aa

Browse files
authored
[7.9][DOCS] Adds delta and offset parameters to Evaluate DFA API docs. (#63331)
1 parent af26b23 commit 199d6aa

File tree

1 file changed

+28
-10
lines changed

1 file changed

+28
-10
lines changed

docs/reference/ml/df-analytics/apis/evaluate-dfanalytics.asciidoc

Lines changed: 28 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -22,11 +22,13 @@ experimental[]
2222
[[ml-evaluate-dfanalytics-prereq]]
2323
== {api-prereq-title}
2424

25-
If the {es} {security-features} are enabled, you must have the following privileges:
25+
If the {es} {security-features} are enabled, you must have the following
26+
privileges:
2627

2728
* cluster: `monitor_ml`
2829

29-
For more information, see <<security-privileges>> and {ml-docs-setup-privileges}.
30+
For more information, see <<security-privileges>> and
31+
{ml-docs-setup-privileges}.
3032

3133

3234
[[ml-evaluate-dfanalytics-desc]]
@@ -122,24 +124,40 @@ which outputs a prediction of values.
122124
in other words the results of the {regression} analysis.
123125

124126
`metrics`::
125-
(Optional, object) Specifies the metrics that are used for the evaluation.
127+
(Optional, object) Specifies the metrics that are used for the evaluation. For
128+
more information on `mse`, `msle`, and `huber`, consult
129+
https://github.com/elastic/examples/tree/master/Machine%20Learning/Regression%20Loss%20Functions[the Jupyter notebook on regression loss functions].
126130
Available metrics:
127131

128132
`mse`:::
129-
(Optional, object) Average squared difference between the predicted values and the actual (`ground truth`) value.
130-
For more information, read {wikipedia}/Mean_squared_error[this wiki article].
133+
(Optional, object) Average squared difference between the predicted values
134+
and the actual (`ground truth`) value. For more information, read
135+
{wikipedia}/Mean_squared_error[this wiki article].
131136

132137
`msle`:::
133-
(Optional, object) Average squared difference between the logarithm of the predicted values and the logarithm of the actual
134-
(`ground truth`) value.
138+
(Optional, object) Average squared difference between the logarithm of the
139+
predicted values and the logarithm of the actual (`ground truth`) value.
140+
141+
`offset`::::
142+
(Optional, double) Defines the transition point at which you switch from
143+
minimizing quadratic error to minimizing quadratic log error. Defaults to
144+
`1`.
135145

136146
`huber`:::
137147
(Optional, object) Pseudo Huber loss function.
138-
For more information, read {wikipedia}/Huber_loss#Pseudo-Huber_loss_function[this wiki article].
148+
For more information, read
149+
{wikipedia}/Huber_loss#Pseudo-Huber_loss_function[this wiki article].
150+
151+
`delta`::::
152+
(Optional, double) Approximates 1/2 (prediction - actual)^2^ for values
153+
much less than delta and approximates a straight line with slope delta for
154+
values much larger than delta. Defaults to `1`. Delta needs to be greater
155+
than `0`.
139156

140157
`r_squared`:::
141-
(Optional, object) Proportion of the variance in the dependent variable that is predictable from the independent variables.
142-
For more information, read {wikipedia}/Coefficient_of_determination[this wiki article].
158+
(Optional, object) Proportion of the variance in the dependent variable that
159+
is predictable from the independent variables. For more information, read
160+
{wikipedia}/Coefficient_of_determination[this wiki article].
143161

144162

145163

0 commit comments

Comments
 (0)