|
| 1 | +/* |
| 2 | + * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one |
| 3 | + * or more contributor license agreements. Licensed under the Elastic License |
| 4 | + * 2.0; you may not use this file except in compliance with the Elastic License |
| 5 | + * 2.0. |
| 6 | + */ |
| 7 | + |
| 8 | +package org.elasticsearch.xpack.esql.vector; |
| 9 | + |
| 10 | +import org.apache.lucene.index.VectorSimilarityFunction; |
| 11 | +import org.elasticsearch.action.index.IndexRequestBuilder; |
| 12 | +import org.elasticsearch.cluster.metadata.IndexMetadata; |
| 13 | +import org.elasticsearch.common.settings.Settings; |
| 14 | +import org.elasticsearch.xcontent.XContentBuilder; |
| 15 | +import org.elasticsearch.xcontent.XContentFactory; |
| 16 | +import org.elasticsearch.xpack.esql.EsqlTestUtils; |
| 17 | +import org.elasticsearch.xpack.esql.action.AbstractEsqlIntegTestCase; |
| 18 | +import org.elasticsearch.xpack.esql.action.EsqlCapabilities; |
| 19 | +import org.junit.Before; |
| 20 | + |
| 21 | +import java.io.IOException; |
| 22 | +import java.util.ArrayList; |
| 23 | +import java.util.List; |
| 24 | +import java.util.Set; |
| 25 | + |
| 26 | +import static org.elasticsearch.test.hamcrest.ElasticsearchAssertions.assertAcked; |
| 27 | + |
| 28 | +public class VectorSimilarityFunctionsIT extends AbstractEsqlIntegTestCase { |
| 29 | + |
| 30 | + private static final Set<String> DENSE_VECTOR_INDEX_TYPES = Set.of( |
| 31 | + /* "int8_hnsw", |
| 32 | + "hnsw", |
| 33 | + "int4_hnsw", |
| 34 | + "bbq_hnsw", |
| 35 | + "int8_flat", |
| 36 | + "int4_flat", |
| 37 | + "bbq_flat",*/ |
| 38 | + "flat" |
| 39 | + ); |
| 40 | + |
| 41 | + @SuppressWarnings("unchecked") |
| 42 | + public void testCosineSimilarity() { |
| 43 | + var query = """ |
| 44 | + FROM test |
| 45 | + | EVAL similarity = v_cosine_similarity(left_vector, right_vector) |
| 46 | + | KEEP id, left_vector, right_vector, similarity |
| 47 | + """; |
| 48 | + |
| 49 | + try (var resp = run(query)) { |
| 50 | + List<List<Object>> valuesList = EsqlTestUtils.getValuesList(resp); |
| 51 | + valuesList.forEach(values -> { |
| 52 | + List<Float> leftVector = (List<Float>) values.get(1); |
| 53 | + float[] leftScratch = new float[leftVector.size()]; |
| 54 | + for (int i = 0; i < leftVector.size(); i++) { |
| 55 | + leftScratch[i] = leftVector.get(i); |
| 56 | + } |
| 57 | + List<Float> rightVector = (List<Float>) values.get(2); |
| 58 | + float[] rightScratch = new float[rightVector.size()]; |
| 59 | + for (int i = 0; i < rightVector.size(); i++) { |
| 60 | + rightScratch[i] = rightVector.get(i); |
| 61 | + } |
| 62 | + Double similarity = (Double) values.get(3); |
| 63 | + assertNotNull(similarity); |
| 64 | + |
| 65 | + float expectedSimilarity = VectorSimilarityFunction.COSINE.compare(leftScratch, rightScratch); |
| 66 | + assertEquals(expectedSimilarity, similarity, 0.0001); |
| 67 | + }); |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + @Before |
| 72 | + public void setup() throws IOException { |
| 73 | + assumeTrue("Dense vector type is disabled", EsqlCapabilities.Cap.DENSE_VECTOR_FIELD_TYPE.isEnabled()); |
| 74 | + |
| 75 | + createIndexWithDenseVector("test"); |
| 76 | + |
| 77 | + int numDims = randomIntBetween(32, 64) * 2; // min 64, even number |
| 78 | + int numDocs = randomIntBetween(10, 100); |
| 79 | + IndexRequestBuilder[] docs = new IndexRequestBuilder[numDocs]; |
| 80 | + for (int i = 0; i < numDocs; i++) { |
| 81 | + List<Float> leftVector = new ArrayList<>(numDims); |
| 82 | + for (int j = 0; j < numDims; j++) { |
| 83 | + leftVector.add(randomFloat()); |
| 84 | + } |
| 85 | + List<Float> rightVector = new ArrayList<>(numDims); |
| 86 | + for (int j = 0; j < numDims; j++) { |
| 87 | + rightVector.add(randomFloat()); |
| 88 | + } |
| 89 | + docs[i] = prepareIndex("test").setId("" + i) |
| 90 | + .setSource("id", String.valueOf(i), "left_vector", leftVector, "right_vector", rightVector); |
| 91 | + } |
| 92 | + |
| 93 | + indexRandom(true, docs); |
| 94 | + } |
| 95 | + |
| 96 | + private void createIndexWithDenseVector(String indexName) throws IOException { |
| 97 | + var client = client().admin().indices(); |
| 98 | + XContentBuilder mapping = XContentFactory.jsonBuilder() |
| 99 | + .startObject() |
| 100 | + .startObject("properties") |
| 101 | + .startObject("id") |
| 102 | + .field("type", "integer") |
| 103 | + .endObject(); |
| 104 | + createDenseVectorField(mapping, "left_vector"); |
| 105 | + createDenseVectorField(mapping, "right_vector"); |
| 106 | + mapping.endObject().endObject(); |
| 107 | + Settings.Builder settingsBuilder = Settings.builder() |
| 108 | + .put(IndexMetadata.SETTING_NUMBER_OF_REPLICAS, 0) |
| 109 | + .put(IndexMetadata.SETTING_NUMBER_OF_SHARDS, randomIntBetween(1, 5)); |
| 110 | + |
| 111 | + var CreateRequest = client.prepareCreate(indexName) |
| 112 | + .setSettings(Settings.builder().put("index.number_of_shards", 1)) |
| 113 | + .setMapping(mapping) |
| 114 | + .setSettings(settingsBuilder.build()); |
| 115 | + assertAcked(CreateRequest); |
| 116 | + } |
| 117 | + |
| 118 | + private void createDenseVectorField(XContentBuilder mapping, String fieldName) throws IOException { |
| 119 | + mapping.startObject(fieldName).field("type", "dense_vector").field("similarity", "cosine"); |
| 120 | + mapping.endObject(); |
| 121 | + } |
| 122 | +} |
0 commit comments