|
15 | 15 | import org.apache.lucene.store.IndexInput;
|
16 | 16 | import org.apache.lucene.store.IndexOutput;
|
17 | 17 | import org.apache.lucene.store.MMapDirectory;
|
18 |
| -import org.apache.lucene.util.quantization.OptimizedScalarQuantizer; |
| 18 | +import org.apache.lucene.util.VectorUtil; |
| 19 | +import org.elasticsearch.index.codec.vectors.BQSpaceUtils; |
| 20 | +import org.elasticsearch.index.codec.vectors.BQVectorUtils; |
| 21 | +import org.elasticsearch.index.codec.vectors.OptimizedScalarQuantizer; |
| 22 | +import org.elasticsearch.simdvec.ES91Int4VectorsScorer; |
19 | 23 | import org.elasticsearch.simdvec.ES91OSQVectorsScorer;
|
20 | 24 |
|
21 |
| -import static org.hamcrest.Matchers.lessThan; |
| 25 | +import java.io.IOException; |
22 | 26 |
|
23 | 27 | public class ES91OSQVectorScorerTests extends BaseVectorizationTests {
|
24 | 28 |
|
25 | 29 | public void testQuantizeScore() throws Exception {
|
26 | 30 | final int dimensions = random().nextInt(1, 2000);
|
27 |
| - final int length = OptimizedScalarQuantizer.discretize(dimensions, 64) / 8; |
| 31 | + final int length = BQVectorUtils.discretize(dimensions, 64) / 8; |
28 | 32 | final int numVectors = random().nextInt(1, 100);
|
29 | 33 | final byte[] vector = new byte[length];
|
30 | 34 | try (Directory dir = new MMapDirectory(createTempDir())) {
|
@@ -53,102 +57,208 @@ public void testQuantizeScore() throws Exception {
|
53 | 57 | }
|
54 | 58 |
|
55 | 59 | public void testScore() throws Exception {
|
56 |
| - final int maxDims = 512; |
| 60 | + final int maxDims = random().nextInt(1, 1000) * 2; |
57 | 61 | final int dimensions = random().nextInt(1, maxDims);
|
58 |
| - final int length = OptimizedScalarQuantizer.discretize(dimensions, 64) / 8; |
59 |
| - final int numVectors = ES91OSQVectorsScorer.BULK_SIZE * random().nextInt(1, 10); |
60 |
| - final byte[] vector = new byte[length]; |
| 62 | + final int length = BQVectorUtils.discretize(dimensions, 64) / 8; |
| 63 | + final int numVectors = random().nextInt(10, 50); |
| 64 | + float[][] vectors = new float[numVectors][dimensions]; |
| 65 | + final int[] scratch = new int[dimensions]; |
| 66 | + final byte[] qVector = new byte[length]; |
| 67 | + final float[] centroid = new float[dimensions]; |
| 68 | + VectorSimilarityFunction similarityFunction = randomFrom(VectorSimilarityFunction.values()); |
| 69 | + randomVector(centroid, similarityFunction); |
| 70 | + OptimizedScalarQuantizer quantizer = new OptimizedScalarQuantizer(similarityFunction); |
61 | 71 | int padding = random().nextInt(100);
|
62 | 72 | byte[] paddingBytes = new byte[padding];
|
63 | 73 | try (Directory dir = new MMapDirectory(createTempDir())) {
|
64 | 74 | try (IndexOutput out = dir.createOutput("testScore.bin", IOContext.DEFAULT)) {
|
65 | 75 | random().nextBytes(paddingBytes);
|
66 | 76 | out.writeBytes(paddingBytes, 0, padding);
|
| 77 | + for (float[] vector : vectors) { |
| 78 | + randomVector(vector, similarityFunction); |
| 79 | + OptimizedScalarQuantizer.QuantizationResult result = quantizer.scalarQuantize( |
| 80 | + vector.clone(), |
| 81 | + scratch, |
| 82 | + (byte) 1, |
| 83 | + centroid |
| 84 | + ); |
| 85 | + BQVectorUtils.packAsBinary(scratch, qVector); |
| 86 | + out.writeBytes(qVector, 0, qVector.length); |
| 87 | + out.writeInt(Float.floatToIntBits(result.lowerInterval())); |
| 88 | + out.writeInt(Float.floatToIntBits(result.upperInterval())); |
| 89 | + out.writeInt(Float.floatToIntBits(result.additionalCorrection())); |
| 90 | + out.writeShort((short) result.quantizedComponentSum()); |
| 91 | + } |
| 92 | + } |
| 93 | + final float[] query = new float[dimensions]; |
| 94 | + randomVector(query, similarityFunction); |
| 95 | + OptimizedScalarQuantizer.QuantizationResult queryCorrections = quantizer.scalarQuantize( |
| 96 | + query.clone(), |
| 97 | + scratch, |
| 98 | + (byte) 4, |
| 99 | + centroid |
| 100 | + ); |
| 101 | + final byte[] quantizeQuery = new byte[4 * length]; |
| 102 | + BQSpaceUtils.transposeHalfByte(scratch, quantizeQuery); |
| 103 | + final float centroidDp = VectorUtil.dotProduct(centroid, centroid); |
| 104 | + final float[] floatScratch = new float[3]; |
| 105 | + try (IndexInput in = dir.openInput("testScore.bin", IOContext.DEFAULT)) { |
| 106 | + in.seek(padding); |
| 107 | + assertEquals(in.length(), padding + (long) numVectors * (length + 14)); |
| 108 | + final IndexInput slice = in.slice("test", in.getFilePointer(), (long) (length + 14) * numVectors); |
| 109 | + // Work on a slice that has just the right number of bytes to make the test fail with an |
| 110 | + // index-out-of-bounds in case the implementation reads more than the allowed number of |
| 111 | + // padding bytes. |
67 | 112 | for (int i = 0; i < numVectors; i++) {
|
68 |
| - random().nextBytes(vector); |
69 |
| - out.writeBytes(vector, 0, length); |
70 |
| - float lower = random().nextFloat(); |
71 |
| - float upper = random().nextFloat() + lower / 2; |
72 |
| - float additionalCorrection = random().nextFloat(); |
73 |
| - int targetComponentSum = randomIntBetween(0, dimensions / 2); |
74 |
| - out.writeInt(Float.floatToIntBits(lower)); |
75 |
| - out.writeInt(Float.floatToIntBits(upper)); |
76 |
| - out.writeShort((short) targetComponentSum); |
77 |
| - out.writeInt(Float.floatToIntBits(additionalCorrection)); |
| 113 | + final ES91OSQVectorsScorer defaultScorer = defaultProvider().newES91OSQVectorsScorer(slice, dimensions); |
| 114 | + final ES91OSQVectorsScorer panamaScorer = maybePanamaProvider().newES91OSQVectorsScorer(in, dimensions); |
| 115 | + long qDist = defaultScorer.quantizeScore(quantizeQuery); |
| 116 | + slice.readFloats(floatScratch, 0, 3); |
| 117 | + int quantizedComponentSum = slice.readShort(); |
| 118 | + float defaulScore = defaultScorer.score( |
| 119 | + queryCorrections.lowerInterval(), |
| 120 | + queryCorrections.upperInterval(), |
| 121 | + queryCorrections.quantizedComponentSum(), |
| 122 | + queryCorrections.additionalCorrection(), |
| 123 | + similarityFunction, |
| 124 | + centroidDp, |
| 125 | + floatScratch[0], |
| 126 | + floatScratch[1], |
| 127 | + quantizedComponentSum, |
| 128 | + floatScratch[2], |
| 129 | + qDist |
| 130 | + ); |
| 131 | + qDist = panamaScorer.quantizeScore(quantizeQuery); |
| 132 | + in.readFloats(floatScratch, 0, 3); |
| 133 | + quantizedComponentSum = in.readShort(); |
| 134 | + float panamaScore = panamaScorer.score( |
| 135 | + queryCorrections.lowerInterval(), |
| 136 | + queryCorrections.upperInterval(), |
| 137 | + queryCorrections.quantizedComponentSum(), |
| 138 | + queryCorrections.additionalCorrection(), |
| 139 | + similarityFunction, |
| 140 | + centroidDp, |
| 141 | + floatScratch[0], |
| 142 | + floatScratch[1], |
| 143 | + quantizedComponentSum, |
| 144 | + floatScratch[2], |
| 145 | + qDist |
| 146 | + ); |
| 147 | + assertEquals(defaulScore, panamaScore, 1e-2f); |
| 148 | + assertEquals(((long) (i + 1) * (length + 14)), slice.getFilePointer()); |
| 149 | + assertEquals(padding + ((long) (i + 1) * (length + 14)), in.getFilePointer()); |
78 | 150 | }
|
79 | 151 | }
|
80 |
| - final byte[] query = new byte[4 * length]; |
81 |
| - random().nextBytes(query); |
82 |
| - float lower = random().nextFloat(); |
83 |
| - OptimizedScalarQuantizer.QuantizationResult result = new OptimizedScalarQuantizer.QuantizationResult( |
84 |
| - lower, |
85 |
| - random().nextFloat() + lower / 2, |
86 |
| - random().nextFloat(), |
87 |
| - randomIntBetween(0, dimensions * 2) |
| 152 | + } |
| 153 | + } |
| 154 | + |
| 155 | + public void testScoreBulk() throws Exception { |
| 156 | + final int maxDims = random().nextInt(1, 1000) * 2; |
| 157 | + final int dimensions = random().nextInt(1, maxDims); |
| 158 | + final int length = BQVectorUtils.discretize(dimensions, 64) / 8; |
| 159 | + final int numVectors = ES91OSQVectorsScorer.BULK_SIZE * random().nextInt(1, 10); |
| 160 | + float[][] vectors = new float[numVectors][dimensions]; |
| 161 | + final int[] scratch = new int[dimensions]; |
| 162 | + final byte[] qVector = new byte[length]; |
| 163 | + final float[] centroid = new float[dimensions]; |
| 164 | + VectorSimilarityFunction similarityFunction = randomFrom(VectorSimilarityFunction.values()); |
| 165 | + randomVector(centroid, similarityFunction); |
| 166 | + OptimizedScalarQuantizer quantizer = new OptimizedScalarQuantizer(similarityFunction); |
| 167 | + int padding = random().nextInt(100); |
| 168 | + byte[] paddingBytes = new byte[padding]; |
| 169 | + try (Directory dir = new MMapDirectory(createTempDir())) { |
| 170 | + try (IndexOutput out = dir.createOutput("testScore.bin", IOContext.DEFAULT)) { |
| 171 | + random().nextBytes(paddingBytes); |
| 172 | + out.writeBytes(paddingBytes, 0, padding); |
| 173 | + int limit = numVectors - ES91OSQVectorsScorer.BULK_SIZE + 1; |
| 174 | + OptimizedScalarQuantizer.QuantizationResult[] results = |
| 175 | + new OptimizedScalarQuantizer.QuantizationResult[ES91Int4VectorsScorer.BULK_SIZE]; |
| 176 | + for (int i = 0; i < limit; i += ES91OSQVectorsScorer.BULK_SIZE) { |
| 177 | + for (int j = 0; j < ES91Int4VectorsScorer.BULK_SIZE; j++) { |
| 178 | + randomVector(vectors[i + j], similarityFunction); |
| 179 | + results[j] = quantizer.scalarQuantize(vectors[i + j].clone(), scratch, (byte) 1, centroid); |
| 180 | + BQVectorUtils.packAsBinary(scratch, qVector); |
| 181 | + out.writeBytes(qVector, 0, qVector.length); |
| 182 | + } |
| 183 | + writeCorrections(results, out); |
| 184 | + } |
| 185 | + } |
| 186 | + final float[] query = new float[dimensions]; |
| 187 | + randomVector(query, similarityFunction); |
| 188 | + OptimizedScalarQuantizer.QuantizationResult queryCorrections = quantizer.scalarQuantize( |
| 189 | + query.clone(), |
| 190 | + scratch, |
| 191 | + (byte) 4, |
| 192 | + centroid |
88 | 193 | );
|
89 |
| - final float centroidDp = random().nextFloat(); |
90 |
| - final float[] scores1 = new float[ES91OSQVectorsScorer.BULK_SIZE]; |
91 |
| - final float[] scores2 = new float[ES91OSQVectorsScorer.BULK_SIZE]; |
92 |
| - for (VectorSimilarityFunction similarityFunction : VectorSimilarityFunction.values()) { |
93 |
| - try (IndexInput in = dir.openInput("testScore.bin", IOContext.DEFAULT)) { |
94 |
| - in.seek(padding); |
95 |
| - assertEquals(in.length(), padding + (long) numVectors * (length + 14)); |
96 |
| - // Work on a slice that has just the right number of bytes to make the test fail with an |
97 |
| - // index-out-of-bounds in case the implementation reads more than the allowed number of |
98 |
| - // padding bytes. |
99 |
| - for (int i = 0; i < numVectors; i += ES91OSQVectorsScorer.BULK_SIZE) { |
100 |
| - final IndexInput slice = in.slice( |
101 |
| - "test", |
102 |
| - in.getFilePointer(), |
103 |
| - (long) (length + 14) * ES91OSQVectorsScorer.BULK_SIZE |
104 |
| - ); |
105 |
| - final ES91OSQVectorsScorer defaultScorer = defaultProvider().newES91OSQVectorsScorer(slice, dimensions); |
106 |
| - final ES91OSQVectorsScorer panamaScorer = maybePanamaProvider().newES91OSQVectorsScorer(in, dimensions); |
107 |
| - defaultScorer.scoreBulk( |
108 |
| - query, |
109 |
| - result.lowerInterval(), |
110 |
| - result.upperInterval(), |
111 |
| - result.quantizedComponentSum(), |
112 |
| - result.additionalCorrection(), |
113 |
| - similarityFunction, |
114 |
| - centroidDp, |
115 |
| - scores1 |
116 |
| - ); |
117 |
| - panamaScorer.scoreBulk( |
118 |
| - query, |
119 |
| - result.lowerInterval(), |
120 |
| - result.upperInterval(), |
121 |
| - result.quantizedComponentSum(), |
122 |
| - result.additionalCorrection(), |
123 |
| - similarityFunction, |
124 |
| - centroidDp, |
125 |
| - scores2 |
126 |
| - ); |
127 |
| - for (int j = 0; j < ES91OSQVectorsScorer.BULK_SIZE; j++) { |
128 |
| - if (scores1[j] == scores2[j]) { |
129 |
| - continue; |
130 |
| - } |
131 |
| - if (scores1[j] > (maxDims * Byte.MAX_VALUE)) { |
132 |
| - float diff = Math.abs(scores1[j] - scores2[j]); |
133 |
| - assertThat( |
134 |
| - "defaultScores: " + scores1[j] + " bulkScores: " + scores2[j], |
135 |
| - diff / scores1[j], |
136 |
| - lessThan(1e-5f) |
137 |
| - ); |
138 |
| - assertThat( |
139 |
| - "defaultScores: " + scores1[j] + " bulkScores: " + scores2[j], |
140 |
| - diff / scores2[j], |
141 |
| - lessThan(1e-5f) |
142 |
| - ); |
143 |
| - } else { |
144 |
| - assertEquals(scores1[j], scores2[j], 1e-2f); |
145 |
| - } |
146 |
| - } |
147 |
| - assertEquals(((long) (ES91OSQVectorsScorer.BULK_SIZE) * (length + 14)), slice.getFilePointer()); |
148 |
| - assertEquals(padding + ((long) (i + ES91OSQVectorsScorer.BULK_SIZE) * (length + 14)), in.getFilePointer()); |
| 194 | + final byte[] quantizeQuery = new byte[4 * length]; |
| 195 | + BQSpaceUtils.transposeHalfByte(scratch, quantizeQuery); |
| 196 | + final float centroidDp = VectorUtil.dotProduct(centroid, centroid); |
| 197 | + final float[] scoresDefault = new float[ES91OSQVectorsScorer.BULK_SIZE]; |
| 198 | + final float[] scoresPanama = new float[ES91OSQVectorsScorer.BULK_SIZE]; |
| 199 | + try (IndexInput in = dir.openInput("testScore.bin", IOContext.DEFAULT)) { |
| 200 | + in.seek(padding); |
| 201 | + assertEquals(in.length(), padding + (long) numVectors * (length + 14)); |
| 202 | + // Work on a slice that has just the right number of bytes to make the test fail with an |
| 203 | + // index-out-of-bounds in case the implementation reads more than the allowed number of |
| 204 | + // padding bytes. |
| 205 | + for (int i = 0; i < numVectors; i += ES91OSQVectorsScorer.BULK_SIZE) { |
| 206 | + final IndexInput slice = in.slice("test", in.getFilePointer(), (long) (length + 14) * ES91OSQVectorsScorer.BULK_SIZE); |
| 207 | + final ES91OSQVectorsScorer defaultScorer = defaultProvider().newES91OSQVectorsScorer(slice, dimensions); |
| 208 | + final ES91OSQVectorsScorer panamaScorer = maybePanamaProvider().newES91OSQVectorsScorer(in, dimensions); |
| 209 | + float defaultMaxScore = defaultScorer.scoreBulk( |
| 210 | + quantizeQuery, |
| 211 | + queryCorrections.lowerInterval(), |
| 212 | + queryCorrections.upperInterval(), |
| 213 | + queryCorrections.quantizedComponentSum(), |
| 214 | + queryCorrections.additionalCorrection(), |
| 215 | + similarityFunction, |
| 216 | + centroidDp, |
| 217 | + scoresDefault |
| 218 | + ); |
| 219 | + float panamaMaxScore = panamaScorer.scoreBulk( |
| 220 | + quantizeQuery, |
| 221 | + queryCorrections.lowerInterval(), |
| 222 | + queryCorrections.upperInterval(), |
| 223 | + queryCorrections.quantizedComponentSum(), |
| 224 | + queryCorrections.additionalCorrection(), |
| 225 | + similarityFunction, |
| 226 | + centroidDp, |
| 227 | + scoresPanama |
| 228 | + ); |
| 229 | + assertEquals(defaultMaxScore, panamaMaxScore, 1e-2f); |
| 230 | + for (int j = 0; j < ES91OSQVectorsScorer.BULK_SIZE; j++) { |
| 231 | + assertEquals(scoresDefault[j], scoresPanama[j], 1e-2f); |
149 | 232 | }
|
| 233 | + assertEquals(((long) (ES91OSQVectorsScorer.BULK_SIZE) * (length + 14)), slice.getFilePointer()); |
| 234 | + assertEquals(padding + ((long) (i + ES91OSQVectorsScorer.BULK_SIZE) * (length + 14)), in.getFilePointer()); |
150 | 235 | }
|
151 | 236 | }
|
152 | 237 | }
|
153 | 238 | }
|
| 239 | + |
| 240 | + private static void writeCorrections(OptimizedScalarQuantizer.QuantizationResult[] corrections, IndexOutput out) throws IOException { |
| 241 | + for (OptimizedScalarQuantizer.QuantizationResult correction : corrections) { |
| 242 | + out.writeInt(Float.floatToIntBits(correction.lowerInterval())); |
| 243 | + } |
| 244 | + for (OptimizedScalarQuantizer.QuantizationResult correction : corrections) { |
| 245 | + out.writeInt(Float.floatToIntBits(correction.upperInterval())); |
| 246 | + } |
| 247 | + for (OptimizedScalarQuantizer.QuantizationResult correction : corrections) { |
| 248 | + int targetComponentSum = correction.quantizedComponentSum(); |
| 249 | + out.writeShort((short) targetComponentSum); |
| 250 | + } |
| 251 | + for (OptimizedScalarQuantizer.QuantizationResult correction : corrections) { |
| 252 | + out.writeInt(Float.floatToIntBits(correction.additionalCorrection())); |
| 253 | + } |
| 254 | + } |
| 255 | + |
| 256 | + private void randomVector(float[] vector, VectorSimilarityFunction vectorSimilarityFunction) { |
| 257 | + for (int i = 0; i < vector.length; i++) { |
| 258 | + vector[i] = random().nextFloat(); |
| 259 | + } |
| 260 | + if (vectorSimilarityFunction != VectorSimilarityFunction.EUCLIDEAN) { |
| 261 | + VectorUtil.l2normalize(vector); |
| 262 | + } |
| 263 | + } |
154 | 264 | }
|
0 commit comments