Skip to content

Commit 7859744

Browse files
committed
Merge branch 'hnsw-directio-bfloat16-enabled' into int-hnsw-bfloat16-enabled
2 parents 4033de6 + 9eaa152 commit 7859744

File tree

94 files changed

+2876
-383
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

94 files changed

+2876
-383
lines changed

docs/changelog/135940.yaml

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
pr: 135940
2+
summary: Enable directIO and bfloat16 for bbq and unquantized vector field types
3+
area: Vector Search
4+
type: feature
5+
issues: []

docs/changelog/136141.yaml

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
pr: 136141
2+
summary: Add settings for health indicator `shard_capacity` thresholds
3+
area: Health
4+
type: enhancement
5+
issues:
6+
- 116697

docs/reference/elasticsearch/configuration-reference/health-diagnostic-settings.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -47,4 +47,8 @@ The following are the *expert-level* settings available for configuring an inter
4747
`health.periodic_logger.poll_interval`
4848
: ([Dynamic](docs-content://deploy-manage/stack-settings.md#dynamic-cluster-setting), [time unit value](/reference/elasticsearch/rest-apis/api-conventions.md#time-units)) How often {{es}} logs the health status of the cluster and of each health indicator as observed by the Health API. Defaults to `60s` (60 seconds).
4949

50+
`health.shard_capacity.unhealthy_threshold.yellow` {applies_to}`stack: ga 9.3`
51+
: ([Dynamic](docs-content://deploy-manage/stack-settings.md#dynamic-cluster-setting)) The minimum number of additional shards the cluster must still be able to allocate (on data or frozen nodes) for shard capacity health to remain `GREEN`. If fewer are available, health becomes `YELLOW`. Must be greater than `health.shard_capacity.unhealthy_threshold.red`. Defaults to `10`.
5052

53+
`health.shard_capacity.unhealthy_threshold.red` {applies_to}`stack: ga 9.3`
54+
: ([Dynamic](docs-content://deploy-manage/stack-settings.md#dynamic-cluster-setting)) The minimum number of additional shards the cluster must still be able to allocate (on data or frozen nodes) below which shard capacity health becomes `RED`. Must be less than `health.shard_capacity.unhealthy_threshold.yellow`. Defaults to `5`.

docs/reference/elasticsearch/mapping-reference/semantic-text.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -424,20 +424,20 @@ POST test-index/_search
424424

425425
## Updates and partial updates for `semantic_text` fields [semantic-text-updates]
426426

427-
When updating documents that contain `semantic_text` fields, its important to understand how inference is triggered:
427+
When updating documents that contain `semantic_text` fields, it's important to understand how inference is triggered:
428428

429-
* **Full document updates**
430-
When you perform a full document update, **all `semantic_text` fields will re-run inference** even if their values did not change. This ensures that the embeddings are always consistent with the current document state but can increase ingestion costs.
429+
Full document updates
430+
: Full document updates re-run inference on all `semantic_text` fields, even if their values did not change. This ensures that embeddings remain consistent with the current document state but can increase ingestion costs.
431431

432-
* **Partial updates using the Bulk API**
433-
Partial updates that **omit `semantic_text` fields** and are submitted through the [Bulk API](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk) will **reuse the existing embeddings** stored in the index. In this case, inference is **not triggered** for fields that were not updated, which can significantly reduce processing time and cost.
432+
Partial updates using the Bulk API
433+
: Partial updates submitted through the [Bulk API](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk) reuse existing embeddings when you omit `semantic_text` fields. Inference does not run for omitted fields, which can significantly reduce processing time and cost.
434434

435-
* **Partial updates using the Update API**
436-
When using the [Update API](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-update) with a `doc` object that **omits `semantic_text` fields**, inference **will still run** on all `semantic_text` fields. This means that even if the field values are not changed, embeddings will be re-generated.
435+
Partial updates using the Update API
436+
: Partial updates submitted through the [Update API](https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-update) re-run inference on all `semantic_text` fields, even when you omit them from the `doc` object. Embeddings are re-generated regardless of whether field values changed.
437437

438-
If you want to avoid unnecessary inference and keep existing embeddings:
438+
To preserve existing embeddings and avoid unnecessary inference costs:
439439

440-
* Use **partial updates through the Bulk API**.
440+
* Use partial updates with the Bulk API.
441441
* Omit any `semantic_text` fields that did not change from the `doc` object in your request.
442442

443443
### Scripted updates

docs/reference/elasticsearch/rest-apis/retrievers/retrievers-examples.md

Lines changed: 54 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,9 @@ First, let’s examine how to combine two different types of queries: a `kNN` qu
113113
While these queries may produce scores in different ranges, we can use Reciprocal Rank Fusion (`rrf`) to combine the results and generate a merged final result list.
114114

115115
To implement this in the retriever framework, we start with the top-level element: our `rrf` retriever.
116-
This retriever operates on top of two other retrievers: a `knn` retriever and a `standard` retriever. Our query structure would look like this:
116+
This retriever operates on top of two other retrievers: a `knn` retriever and a `standard` retriever.
117+
We can specify weights to adjust the influence of each retriever on the final ranking.
118+
In this example, we're giving the `standard` retriever twice the influence of the `knn` retriever:
117119

118120
```console
119121
GET /retrievers_example/_search
@@ -197,6 +199,57 @@ This returns the following response based on the final rrf score for each result
197199
::::
198200

199201

202+
### Using the expanded format with weights
203+
```{applies_to}
204+
stack: ga 9.2
205+
```
206+
207+
The same query can be written using the expanded format, which allows you to specify custom weights to adjust the influence of each retriever on the final ranking.
208+
In this example, we're giving the `standard` retriever twice the influence of the `knn` retriever:
209+
210+
```console
211+
GET /retrievers_example/_search
212+
{
213+
"retriever": {
214+
"rrf": {
215+
"retrievers": [
216+
{
217+
"retriever": {
218+
"standard": {
219+
"query": {
220+
"query_string": {
221+
"query": "(information retrieval) OR (artificial intelligence)",
222+
"default_field": "text"
223+
}
224+
}
225+
}
226+
},
227+
"weight": 2.0
228+
},
229+
{
230+
"retriever": {
231+
"knn": {
232+
"field": "vector",
233+
"query_vector": [
234+
0.23,
235+
0.67,
236+
0.89
237+
],
238+
"k": 3,
239+
"num_candidates": 5
240+
}
241+
},
242+
"weight": 1.0
243+
}
244+
],
245+
"rank_window_size": 10,
246+
"rank_constant": 1
247+
}
248+
},
249+
"_source": false
250+
}
251+
```
252+
200253

201254
## Example: Hybrid search with linear retriever [retrievers-examples-linear-retriever]
202255

docs/reference/elasticsearch/rest-apis/retrievers/rrf-retriever.md

Lines changed: 153 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ applies_to:
66

77
# RRF retriever [rrf-retriever]
88

9-
An [RRF](/reference/elasticsearch/rest-apis/reciprocal-rank-fusion.md) retriever returns top documents based on the RRF formula, equally weighting two or more child retrievers.
9+
An [RRF](/reference/elasticsearch/rest-apis/reciprocal-rank-fusion.md) retriever returns top documents based on the RRF formula, combining two or more child retrievers.
1010
Reciprocal rank fusion (RRF) is a method for combining multiple result sets with different relevance indicators into a single result set.
1111

1212

@@ -32,7 +32,13 @@ Combining `query` and `retrievers` is not supported.
3232
: (Optional, array of retriever objects)
3333

3434
A list of child retrievers to specify which sets of returned top documents will have the RRF formula applied to them.
35-
Each child retriever carries an equal weight as part of the RRF formula. Two or more child retrievers are required.
35+
Each retriever can optionally include a weight to adjust its influence on the final ranking. {applies_to}`stack: ga 9.2`
36+
37+
When weights are specified, the final RRF score is calculated as:
38+
```
39+
rrf_score = weight_1 × rrf_score_1 + weight_2 × rrf_score_2 + ... + weight_n × rrf_score_n
40+
```
41+
where `rrf_score_i` is the RRF score for document from retriever `i`, and `weight_i` is the weight for that retriever.
3642

3743
`rank_constant`
3844
: (Optional, integer)
@@ -53,6 +59,82 @@ Combining `query` and `retrievers` is not supported.
5359

5460
Applies the specified [boolean query filter](/reference/query-languages/query-dsl/query-dsl-bool-query.md) to all of the specified sub-retrievers, according to each retriever’s specifications.
5561

62+
Each entry in the `retrievers` array can be specified using the direct format or the wrapped format. {applies_to}`stack: ga 9.2`
63+
64+
**Direct format** (default weight of `1.0`):
65+
```json
66+
{
67+
"rrf": {
68+
"retrievers": [
69+
{
70+
"standard": {
71+
"query": {
72+
"multi_match": {
73+
"query": "search text",
74+
"fields": ["field1", "field2"]
75+
}
76+
}
77+
}
78+
},
79+
{
80+
"knn": {
81+
"field": "vector",
82+
"query_vector": [1, 2, 3],
83+
"k": 10,
84+
"num_candidates": 50
85+
}
86+
}
87+
]
88+
}
89+
}
90+
```
91+
92+
**Wrapped format with custom weights** {applies_to}`stack: ga 9.2`:
93+
```json
94+
{
95+
"rrf": {
96+
"retrievers": [
97+
{
98+
"retriever": {
99+
"standard": {
100+
"query": {
101+
"multi_match": {
102+
"query": "search text",
103+
"fields": ["field1", "field2"]
104+
}
105+
}
106+
}
107+
},
108+
"weight": 2.0
109+
},
110+
{
111+
"retriever": {
112+
"knn": {
113+
"field": "vector",
114+
"query_vector": [1, 2, 3],
115+
"k": 10,
116+
"num_candidates": 50
117+
}
118+
},
119+
"weight": 1.0
120+
}
121+
]
122+
}
123+
}
124+
```
125+
126+
In the wrapped format:
127+
128+
`retriever`
129+
: (Required, a retriever object)
130+
131+
Specifies a child retriever. Any valid retriever type can be used (e.g., `standard`, `knn`, `text_similarity_reranker`, etc.).
132+
133+
`weight` {applies_to}`stack: ga 9.2`
134+
: (Optional, float)
135+
136+
The weight that each score of this retriever's top docs will be multiplied in the RRF formula. Higher values increase this retriever's influence on the final ranking. Must be non-negative. Defaults to `1.0`.
137+
56138
## Example: Hybrid search [rrf-retriever-example-hybrid]
57139

58140
A simple hybrid search example (lexical search + dense vector search) combining a `standard` retriever with a `knn` retriever using RRF:
@@ -182,6 +264,75 @@ GET /restaurants/_search
182264
5. The rank constant for the RRF retriever.
183265
6. The rank window size for the RRF retriever.
184266

267+
## Example: Weighted hybrid search [rrf-retriever-example-weighted]
268+
269+
{applies_to}`stack: ga 9.2`
270+
271+
This example demonstrates how to use weights to adjust the influence of different retrievers in the RRF ranking.
272+
In this case, we're giving the `standard` retriever more importance (weight 2.0) compared to the `knn` retriever (weight 1.0):
273+
274+
```console
275+
GET /restaurants/_search
276+
{
277+
"retriever": {
278+
"rrf": {
279+
"retrievers": [
280+
{
281+
"retriever": { <1>
282+
"standard": {
283+
"query": {
284+
"multi_match": {
285+
"query": "Austria",
286+
"fields": ["city", "region"]
287+
}
288+
}
289+
}
290+
},
291+
"weight": 2.0 <2>
292+
},
293+
{
294+
"retriever": { <3>
295+
"knn": {
296+
"field": "vector",
297+
"query_vector": [10, 22, 77],
298+
"k": 10,
299+
"num_candidates": 10
300+
}
301+
},
302+
"weight": 1.0 <4>
303+
}
304+
],
305+
"rank_constant": 60,
306+
"rank_window_size": 50
307+
}
308+
}
309+
}
310+
```
311+
% TEST[continued]
312+
313+
1. The first retriever in weighted format.
314+
2. This retriever has a weight of 2.0, giving it twice the influence of the kNN retriever.
315+
3. The second retriever in weighted format.
316+
4. This retriever has a weight of 1.0 (default weight).
317+
318+
::::{note}
319+
You can mix weighted and non-weighted formats in the same query.
320+
The direct format (without explicit `retriever` wrapper) uses the default weight of `1.0`:
321+
322+
```json
323+
{
324+
"rrf": {
325+
"retrievers": [
326+
{ "standard": { "query": {...} } },
327+
{ "retriever": { "knn": {...} }, "weight": 2.0 }
328+
]
329+
}
330+
}
331+
```
332+
333+
In this example, the `standard` retriever uses weight `1.0` (default), while the `knn` retriever uses weight `2.0`.
334+
::::
335+
185336
## Example: Hybrid search with sparse vectors [rrf-retriever-example-hybrid-sparse]
186337

187338
A more complex hybrid search example (lexical search + ELSER sparse vector search + dense vector search) using RRF:

libs/exponential-histogram/src/main/java/org/elasticsearch/exponentialhistogram/FixedCapacityExponentialHistogram.java

Lines changed: 27 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,10 @@
3030
* <br>
3131
* Consumers must ensure that if the histogram is mutated, all previously acquired {@link BucketIterator}
3232
* instances are no longer used.
33+
* <br>
34+
* This implementation is thread-safe for all operations provided via {@link ReleasableExponentialHistogram} and its superclasses,
35+
* as long as it is not mutated concurrently using any of the methods declared in addition in this class
36+
* (e.g. {@link #tryAddBucket(long, long, boolean)}).
3337
*/
3438
final class FixedCapacityExponentialHistogram extends AbstractExponentialHistogram implements ReleasableExponentialHistogram {
3539

@@ -243,8 +247,10 @@ private class Buckets implements ExponentialHistogram.Buckets {
243247

244248
private final boolean isPositive;
245249
private int numBuckets;
246-
private int cachedValueSumForNumBuckets;
247-
private long cachedValueSum;
250+
251+
private record CachedCountsSum(int numBuckets, long countsSum) {}
252+
253+
private CachedCountsSum cachedCountsSum;
248254

249255
/**
250256
* @param isPositive true, if this object should represent the positive bucket range, false for the negative range
@@ -263,8 +269,7 @@ int startSlot() {
263269

264270
final void reset() {
265271
numBuckets = 0;
266-
cachedValueSumForNumBuckets = 0;
267-
cachedValueSum = 0;
272+
cachedCountsSum = null;
268273
}
269274

270275
boolean tryAddBucket(long index, long count) {
@@ -297,12 +302,26 @@ public OptionalLong maxBucketIndex() {
297302

298303
@Override
299304
public long valueCount() {
305+
// copy a reference to the field to avoid problems with concurrent updates
306+
CachedCountsSum cachedVal = cachedCountsSum;
307+
if (cachedVal != null && cachedVal.numBuckets == numBuckets) {
308+
return cachedVal.countsSum;
309+
}
310+
311+
long countsSum = 0;
312+
int position = 0;
313+
if (cachedVal != null) {
314+
countsSum = cachedVal.countsSum;
315+
position = cachedVal.numBuckets;
316+
}
317+
300318
int startSlot = startSlot();
301-
while (cachedValueSumForNumBuckets < numBuckets) {
302-
cachedValueSum += bucketCounts[startSlot + cachedValueSumForNumBuckets];
303-
cachedValueSumForNumBuckets++;
319+
while (position < numBuckets) {
320+
countsSum += bucketCounts[startSlot + position];
321+
position++;
304322
}
305-
return cachedValueSum;
323+
this.cachedCountsSum = new CachedCountsSum(position, countsSum);
324+
return countsSum;
306325
}
307326

308327
@Override

0 commit comments

Comments
 (0)