You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
where  is computed to assure that the score takes the value `decay` at distance `scale` from `origin ± offset`
375
378
376
-

379
+
:::{math}
380
+
\sigma^2 = -scale^2 / (2 \cdot ln(decay))
381
+
:::
377
382
378
383
See [Normal decay, keyword `gauss`](#gauss-decay) for graphs demonstrating the curve generated by the `gauss` function.
379
384
380
385
381
386
`exp`
382
387
: Exponential decay, computed as:
383
388
384
-

385
389
386
-
where again the parameter  is computed to assure that the score takes the value `decay` at distance `scale` from `origin`+-`offset`
where again the parameter  is computed to assure that the score takes the value `decay` at distance `scale` from `origin ± offset`
395
+
396
+
:::{math}
397
+
\lambda = ln(decay)/scale
398
+
:::
389
399
390
400
See [Exponential decay, keyword `exp`](#exp-decay) for graphs demonstrating the curve generated by the `exp` function.
391
401
392
402
393
403
`linear`
394
404
: Linear decay, computed as:
395
405
396
-
.
397
406
398
-
where again the parameter `s` is computed to assure that the score takes the value `decay` at distance `scale` from `origin`+-`offset`
407
+
:::{math}
408
+
S(doc) = max \left( \dfrac{s - max(0, | fieldvalue_{doc} - origin| - offset)}{ s }, 0 \right)
409
+
:::
410
+
411
+
where again the parameter `s` is computed to assure that the score takes the value `decay` at distance `scale` from `origin ± offset`
399
412
400
-

413
+
:::{math}
414
+
s = scale / (1.0 - decay)
415
+
:::
401
416
402
417
In contrast to the normal and exponential decay, this function actually sets the score to 0 if the field value exceeds twice the user given scale value.
0 commit comments