| 
2 | 2 | navigation_title: "Semantic text"  | 
3 | 3 | mapped_pages:  | 
4 | 4 |   - https://www.elastic.co/guide/en/elasticsearch/reference/current/semantic-text.html  | 
 | 5 | +applies_to:  | 
 | 6 | +  stack: ga 9.0  | 
 | 7 | +  serverless: ga  | 
5 | 8 | ---  | 
6 | 9 | 
 
  | 
7 | 10 | # Semantic text field type [semantic-text]  | 
@@ -29,7 +32,8 @@ service.  | 
29 | 32 | Using `semantic_text`, you won’t need to specify how to generate embeddings for  | 
30 | 33 | your data, or how to index it. The {{infer}} endpoint automatically determines  | 
31 | 34 | the embedding generation, indexing, and query to use.  | 
32 |  | -Newly created indices with `semantic_text` fields using dense embeddings will be  | 
 | 35 | + | 
 | 36 | +{applies_to}`stack: ga 9.1`  Newly created indices with `semantic_text` fields using dense embeddings will be  | 
33 | 37 | [quantized](/reference/elasticsearch/mapping-reference/dense-vector.md#dense-vector-quantization)  | 
34 | 38 | to `bbq_hnsw` automatically.  | 
35 | 39 | 
 
  | 
@@ -182,6 +186,15 @@ For more details on chunking and how to configure chunking settings,  | 
182 | 186 | see [Configuring chunking](https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-inference)  | 
183 | 187 | in the Inference API documentation.  | 
184 | 188 | 
 
  | 
 | 189 | +Refer  | 
 | 190 | +to [this tutorial](docs-content://solutions/search/semantic-search/semantic-search-semantic-text.md)  | 
 | 191 | +to learn more about semantic search using `semantic_text`.  | 
 | 192 | + | 
 | 193 | +### Pre-chunking [pre-chunking]  | 
 | 194 | +```{applies_to}  | 
 | 195 | +stack: ga 9.1  | 
 | 196 | +```  | 
 | 197 | + | 
185 | 198 | You can pre-chunk the input by sending it to Elasticsearch as an array of  | 
186 | 199 | strings.  | 
187 | 200 | Example:  | 
@@ -228,10 +241,6 @@ PUT test-index/_doc/1  | 
228 | 241 |     * Others (such as `elastic` and `elasticsearch`) will automatically truncate  | 
229 | 242 |       the input.  | 
230 | 243 | 
 
  | 
231 |  | -Refer  | 
232 |  | -to [this tutorial](docs-content://solutions/search/semantic-search/semantic-search-semantic-text.md)  | 
233 |  | -to learn more about semantic search using `semantic_text`.  | 
234 |  | - | 
235 | 244 | ## Extracting relevant fragments from semantic text [semantic-text-highlighting]  | 
236 | 245 | 
 
  | 
237 | 246 | You can extract the most relevant fragments from a semantic text field by using  | 
@@ -295,6 +304,11 @@ specified. It enables you to quickstart your semantic search by providing  | 
295 | 304 | automatic {{infer}} and a dedicated query so you don’t need to provide further  | 
296 | 305 | details.  | 
297 | 306 | 
 
  | 
 | 307 | +### Customizing using `semantic_text` parameters [custom-by-parameters]  | 
 | 308 | +```{applies_to}  | 
 | 309 | +stack: ga 9.1  | 
 | 310 | +```  | 
 | 311 | + | 
298 | 312 | If you want to override those defaults and customize the embeddings that  | 
299 | 313 | `semantic_text` indexes, you can do so by  | 
300 | 314 | modifying [parameters](#semantic-text-params):  | 
@@ -328,6 +342,24 @@ PUT my-index-000004  | 
328 | 342 | }  | 
329 | 343 | ```  | 
330 | 344 | 
 
  | 
 | 345 | +### Customizing using ingest pipelines [custom-by-pipelines]  | 
 | 346 | +```{applies_to}  | 
 | 347 | +stack: ga 9.0  | 
 | 348 | +```  | 
 | 349 | + | 
 | 350 | +In case you want to customize data indexing, use the  | 
 | 351 | +[`sparse_vector`](/reference/elasticsearch/mapping-reference/sparse-vector.md)  | 
 | 352 | +or [`dense_vector`](/reference/elasticsearch/mapping-reference/dense-vector.md)  | 
 | 353 | +field types and create an ingest pipeline with an   | 
 | 354 | +[{{infer}} processor](/reference/enrich-processor/inference-processor.md) to  | 
 | 355 | +generate the embeddings.  | 
 | 356 | +[This tutorial](docs-content://solutions/search/semantic-search/semantic-search-inference.md)  | 
 | 357 | +walks you through the process. In these cases - when you use `sparse_vector` or  | 
 | 358 | +`dense_vector` field types instead of the `semantic_text` field type to  | 
 | 359 | +customize indexing - using the  | 
 | 360 | +[`semantic_query`](/reference/query-languages/query-dsl/query-dsl-semantic-query.md)  | 
 | 361 | +is not supported for querying the field data.  | 
 | 362 | + | 
331 | 363 | ## Updates to `semantic_text` fields [update-script]  | 
332 | 364 | 
 
  | 
333 | 365 | For indices containing `semantic_text` fields, updates that use scripts have the  | 
 | 
0 commit comments