| 
 | 1 | +/*  | 
 | 2 | + * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one  | 
 | 3 | + * or more contributor license agreements. Licensed under the "Elastic License  | 
 | 4 | + * 2.0", the "GNU Affero General Public License v3.0 only", and the "Server Side  | 
 | 5 | + * Public License v 1"; you may not use this file except in compliance with, at  | 
 | 6 | + * your election, the "Elastic License 2.0", the "GNU Affero General Public  | 
 | 7 | + * License v3.0 only", or the "Server Side Public License, v 1".  | 
 | 8 | + */  | 
 | 9 | +package org.elasticsearch.benchmark.vector;  | 
 | 10 | + | 
 | 11 | +import org.apache.lucene.index.VectorSimilarityFunction;  | 
 | 12 | +import org.apache.lucene.store.Directory;  | 
 | 13 | +import org.apache.lucene.store.IOContext;  | 
 | 14 | +import org.apache.lucene.store.IndexInput;  | 
 | 15 | +import org.apache.lucene.store.IndexOutput;  | 
 | 16 | +import org.apache.lucene.store.MMapDirectory;  | 
 | 17 | +import org.apache.lucene.util.quantization.OptimizedScalarQuantizer;  | 
 | 18 | +import org.elasticsearch.common.logging.LogConfigurator;  | 
 | 19 | +import org.elasticsearch.core.IOUtils;  | 
 | 20 | +import org.elasticsearch.simdvec.ES91Int4VectorsScorer;  | 
 | 21 | +import org.elasticsearch.simdvec.ES92Int7VectorsScorer;  | 
 | 22 | +import org.elasticsearch.simdvec.internal.vectorization.ESVectorizationProvider;  | 
 | 23 | +import org.openjdk.jmh.annotations.Benchmark;  | 
 | 24 | +import org.openjdk.jmh.annotations.BenchmarkMode;  | 
 | 25 | +import org.openjdk.jmh.annotations.Fork;  | 
 | 26 | +import org.openjdk.jmh.annotations.Measurement;  | 
 | 27 | +import org.openjdk.jmh.annotations.Mode;  | 
 | 28 | +import org.openjdk.jmh.annotations.OutputTimeUnit;  | 
 | 29 | +import org.openjdk.jmh.annotations.Param;  | 
 | 30 | +import org.openjdk.jmh.annotations.Scope;  | 
 | 31 | +import org.openjdk.jmh.annotations.Setup;  | 
 | 32 | +import org.openjdk.jmh.annotations.State;  | 
 | 33 | +import org.openjdk.jmh.annotations.TearDown;  | 
 | 34 | +import org.openjdk.jmh.annotations.Warmup;  | 
 | 35 | +import org.openjdk.jmh.infra.Blackhole;  | 
 | 36 | + | 
 | 37 | +import java.io.IOException;  | 
 | 38 | +import java.nio.file.Files;  | 
 | 39 | +import java.util.concurrent.ThreadLocalRandom;  | 
 | 40 | +import java.util.concurrent.TimeUnit;  | 
 | 41 | + | 
 | 42 | +@BenchmarkMode(Mode.Throughput)  | 
 | 43 | +@OutputTimeUnit(TimeUnit.MILLISECONDS)  | 
 | 44 | +@State(Scope.Benchmark)  | 
 | 45 | +// first iteration is complete garbage, so make sure we really warmup  | 
 | 46 | +@Warmup(iterations = 4, time = 1)  | 
 | 47 | +// real iterations. not useful to spend tons of time here, better to fork more  | 
 | 48 | +@Measurement(iterations = 5, time = 1)  | 
 | 49 | +// engage some noise reduction  | 
 | 50 | +@Fork(value = 1)  | 
 | 51 | +public class Int7ScorerBenchmark {  | 
 | 52 | + | 
 | 53 | +    static {  | 
 | 54 | +        LogConfigurator.configureESLogging(); // native access requires logging to be initialized  | 
 | 55 | +    }  | 
 | 56 | + | 
 | 57 | +    @Param({ "384", "782", "1024" })  | 
 | 58 | +    int dims;  | 
 | 59 | + | 
 | 60 | +    int numVectors = 20 * ES92Int7VectorsScorer.BULK_SIZE;  | 
 | 61 | +    int numQueries = 5;  | 
 | 62 | + | 
 | 63 | +    byte[] scratch;  | 
 | 64 | +    byte[][] binaryVectors;  | 
 | 65 | +    byte[][] binaryQueries;  | 
 | 66 | +    float[] scores = new float[ES92Int7VectorsScorer.BULK_SIZE];  | 
 | 67 | + | 
 | 68 | +    ES92Int7VectorsScorer scorer;  | 
 | 69 | +    Directory dir;  | 
 | 70 | +    IndexInput in;  | 
 | 71 | + | 
 | 72 | +    OptimizedScalarQuantizer.QuantizationResult queryCorrections;  | 
 | 73 | +    float centroidDp;  | 
 | 74 | + | 
 | 75 | +    @Setup  | 
 | 76 | +    public void setup() throws IOException {  | 
 | 77 | +        binaryVectors = new byte[numVectors][dims];  | 
 | 78 | +        dir = new MMapDirectory(Files.createTempDirectory("vectorData"));  | 
 | 79 | +        try (IndexOutput out = dir.createOutput("vectors", IOContext.DEFAULT)) {  | 
 | 80 | +            for (byte[] binaryVector : binaryVectors) {  | 
 | 81 | +                for (int i = 0; i < dims; i++) {  | 
 | 82 | +                    // 4-bit quantization  | 
 | 83 | +                    binaryVector[i] = (byte) ThreadLocalRandom.current().nextInt(128);  | 
 | 84 | +                }  | 
 | 85 | +                out.writeBytes(binaryVector, 0, binaryVector.length);  | 
 | 86 | +                ThreadLocalRandom.current().nextBytes(binaryVector);  | 
 | 87 | +                out.writeBytes(binaryVector, 0, 16); // corrections  | 
 | 88 | +            }  | 
 | 89 | +        }  | 
 | 90 | + | 
 | 91 | +        queryCorrections = new OptimizedScalarQuantizer.QuantizationResult(  | 
 | 92 | +            ThreadLocalRandom.current().nextFloat(),  | 
 | 93 | +            ThreadLocalRandom.current().nextFloat(),  | 
 | 94 | +            ThreadLocalRandom.current().nextFloat(),  | 
 | 95 | +            Short.toUnsignedInt((short) ThreadLocalRandom.current().nextInt())  | 
 | 96 | +        );  | 
 | 97 | +        centroidDp = ThreadLocalRandom.current().nextFloat();  | 
 | 98 | + | 
 | 99 | +        in = dir.openInput("vectors", IOContext.DEFAULT);  | 
 | 100 | +        binaryQueries = new byte[numVectors][dims];  | 
 | 101 | +        for (byte[] binaryVector : binaryVectors) {  | 
 | 102 | +            for (int i = 0; i < dims; i++) {  | 
 | 103 | +                // 7-bit quantization  | 
 | 104 | +                binaryVector[i] = (byte) ThreadLocalRandom.current().nextInt(128);  | 
 | 105 | +            }  | 
 | 106 | +        }  | 
 | 107 | + | 
 | 108 | +        scratch = new byte[dims];  | 
 | 109 | +        scorer = ESVectorizationProvider.getInstance().newES92Int7VectorsScorer(in, dims);  | 
 | 110 | +    }  | 
 | 111 | + | 
 | 112 | +    @TearDown  | 
 | 113 | +    public void teardown() throws IOException {  | 
 | 114 | +        IOUtils.close(dir, in);  | 
 | 115 | +    }  | 
 | 116 | + | 
 | 117 | +    @Benchmark  | 
 | 118 | +    @Fork(jvmArgsPrepend = { "--add-modules=jdk.incubator.vector" })  | 
 | 119 | +    public void scoreFromMemorySegment(Blackhole bh) throws IOException {  | 
 | 120 | +        for (int j = 0; j < numQueries; j++) {  | 
 | 121 | +            in.seek(0);  | 
 | 122 | +            for (int i = 0; i < numVectors; i++) {  | 
 | 123 | +                bh.consume(  | 
 | 124 | +                    scorer.score(  | 
 | 125 | +                        binaryQueries[j],  | 
 | 126 | +                        queryCorrections.lowerInterval(),  | 
 | 127 | +                        queryCorrections.upperInterval(),  | 
 | 128 | +                        queryCorrections.quantizedComponentSum(),  | 
 | 129 | +                        queryCorrections.additionalCorrection(),  | 
 | 130 | +                        VectorSimilarityFunction.EUCLIDEAN,  | 
 | 131 | +                        centroidDp  | 
 | 132 | +                    )  | 
 | 133 | +                );  | 
 | 134 | +            }  | 
 | 135 | +        }  | 
 | 136 | +    }  | 
 | 137 | + | 
 | 138 | +    @Benchmark  | 
 | 139 | +    @Fork(jvmArgsPrepend = { "--add-modules=jdk.incubator.vector" })  | 
 | 140 | +    public void scoreFromMemorySegmentBulk(Blackhole bh) throws IOException {  | 
 | 141 | +        for (int j = 0; j < numQueries; j++) {  | 
 | 142 | +            in.seek(0);  | 
 | 143 | +            for (int i = 0; i < numVectors; i += ES91Int4VectorsScorer.BULK_SIZE) {  | 
 | 144 | +                scorer.scoreBulk(  | 
 | 145 | +                    binaryQueries[j],  | 
 | 146 | +                    queryCorrections.lowerInterval(),  | 
 | 147 | +                    queryCorrections.upperInterval(),  | 
 | 148 | +                    queryCorrections.quantizedComponentSum(),  | 
 | 149 | +                    queryCorrections.additionalCorrection(),  | 
 | 150 | +                    VectorSimilarityFunction.EUCLIDEAN,  | 
 | 151 | +                    centroidDp,  | 
 | 152 | +                    scores  | 
 | 153 | +                );  | 
 | 154 | +                for (float score : scores) {  | 
 | 155 | +                    bh.consume(score);  | 
 | 156 | +                }  | 
 | 157 | +            }  | 
 | 158 | +        }  | 
 | 159 | +    }  | 
 | 160 | +}  | 
0 commit comments