Skip to content

Commit cb9c0aa

Browse files
author
elasticsearchmachine
committed
[CI] Auto commit changes from spotless
1 parent a989226 commit cb9c0aa

File tree

1 file changed

+115
-117
lines changed

1 file changed

+115
-117
lines changed

x-pack/plugin/rank-rrf/src/internalClusterTest/java/org/elasticsearch/xpack/rank/linear/LinearRetrieverIT.java

Lines changed: 115 additions & 117 deletions
Original file line numberDiff line numberDiff line change
@@ -47,13 +47,11 @@
4747
import java.util.Collection;
4848
import java.util.List;
4949
import java.util.concurrent.atomic.AtomicInteger;
50-
import java.util.stream.Collectors;
5150

5251
import static org.elasticsearch.cluster.metadata.IndexMetadata.SETTING_NUMBER_OF_SHARDS;
5352
import static org.elasticsearch.test.hamcrest.ElasticsearchAssertions.assertResponse;
5453
import static org.hamcrest.CoreMatchers.is;
5554
import static org.hamcrest.Matchers.closeTo;
56-
import static org.hamcrest.Matchers.containsInAnyOrder;
5755
import static org.hamcrest.Matchers.containsString;
5856
import static org.hamcrest.Matchers.equalTo;
5957
import static org.hamcrest.Matchers.instanceOf;
@@ -858,120 +856,120 @@ public void testLinearRetrieverWithMinScoreValidation() {
858856
}
859857

860858
// public void testLinearRetrieverWithMinScoreScenarios() {
861-
// final int rankWindowSize = 10;
862-
863-
// // Setup test data
864-
// indexDoc(INDEX, "doc_1", TEXT_FIELD, "term1", "views.last30d", 10, "views.all", 100);
865-
// indexDoc(INDEX, "doc_2", TEXT_FIELD, "term1 term2", "views.last30d", 20, "views.all", 200);
866-
// indexDoc(INDEX, "doc_3", TEXT_FIELD, "term1 term2 term3", "views.last30d", 30, "views.all", 300);
867-
// indexDoc(INDEX, "doc_4", TEXT_FIELD, "term4", "views.last30d", 40, "views.all", 400);
868-
// refresh(INDEX);
869-
870-
// // Create retrievers with different scoring
871-
// StandardRetrieverBuilder retrieverA = new StandardRetrieverBuilder(QueryBuilders.termQuery(TEXT_FIELD, "term1").boost(10.0f));
872-
// StandardRetrieverBuilder retrieverB = new StandardRetrieverBuilder(QueryBuilders.termQuery(TEXT_FIELD, "term2").boost(1.0f));
873-
874-
// float[] weights = new float[] { 1.0f, 1.0f };
875-
// ScoreNormalizer[] identityNormalizers = LinearRetrieverBuilder.getDefaultNormalizers(2);
876-
877-
// // Scenario 1: No min_score - all docs returned
878-
// LinearRetrieverBuilder builderNoMinScore = new LinearRetrieverBuilder(
879-
// List.of(
880-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverA, null),
881-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverB, null)
882-
// ),
883-
// rankWindowSize,
884-
// weights,
885-
// identityNormalizers
886-
// );
887-
888-
// SearchSourceBuilder sourceNoMinScore = new SearchSourceBuilder().retriever(builderNoMinScore).size(rankWindowSize);
889-
890-
// ElasticsearchAssertions.assertResponse(client().prepareSearch(INDEX).setSource(sourceNoMinScore), resp -> {
891-
// assertThat(resp.getHits().getTotalHits().value(), equalTo(3L)); // doc_1, doc_2, doc_3 match
892-
// assertThat(resp.getHits().getHits()[0].getId(), equalTo("doc_3")); // term1(10) + term2(1) = 11
893-
// assertThat(resp.getHits().getHits()[1].getId(), equalTo("doc_2")); // term1(10) + term2(1) = 11
894-
// assertThat(resp.getHits().getHits()[2].getId(), equalTo("doc_1")); // term1(10) = 10
895-
// });
896-
897-
// // Scenario 2: minScore = 0.0f - all matching docs returned (inclusive)
898-
// LinearRetrieverBuilder builderZeroMinScore = new LinearRetrieverBuilder(
899-
// List.of(
900-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverA, null),
901-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverB, null)
902-
// ),
903-
// rankWindowSize,
904-
// weights,
905-
// identityNormalizers
906-
// ).minScore(0.0f);
907-
908-
// SearchSourceBuilder sourceZeroMinScore = new SearchSourceBuilder().retriever(builderZeroMinScore).size(rankWindowSize);
909-
910-
// ElasticsearchAssertions.assertResponse(
911-
// client().prepareSearch(INDEX).setSource(sourceZeroMinScore),
912-
// resp -> assertThat(resp.getHits().getTotalHits().value(), equalTo(3L))
913-
// );
914-
915-
// // Scenario 3: Basic filtering - minScore = 10.5f
916-
// LinearRetrieverBuilder builderFilterBasic = new LinearRetrieverBuilder(
917-
// List.of(
918-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverA, null),
919-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverB, null)
920-
// ),
921-
// rankWindowSize,
922-
// weights,
923-
// identityNormalizers
924-
// ).minScore(10.5f);
925-
926-
// SearchSourceBuilder sourceFilterBasic = new SearchSourceBuilder().retriever(builderFilterBasic).size(rankWindowSize);
927-
928-
// ElasticsearchAssertions.assertResponse(client().prepareSearch(INDEX).setSource(sourceFilterBasic), resp -> {
929-
// assertThat(resp.getHits().getTotalHits().value(), equalTo(2L)); // doc_2 and doc_3 have score 11.0
930-
// List<String> ids = Arrays.stream(resp.getHits().getHits()).map(h -> h.getId()).collect(Collectors.toList());
931-
// assertThat(ids, containsInAnyOrder("doc_2", "doc_3"));
932-
// });
933-
934-
// // Scenario 4: Filter all documents - minScore = 20.0f
935-
// LinearRetrieverBuilder builderFilterAll = new LinearRetrieverBuilder(
936-
// List.of(
937-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverA, null),
938-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverB, null)
939-
// ),
940-
// rankWindowSize,
941-
// weights,
942-
// identityNormalizers
943-
// ).minScore(20.0f);
944-
945-
// SearchSourceBuilder sourceFilterAll = new SearchSourceBuilder().retriever(builderFilterAll).size(rankWindowSize);
946-
947-
// ElasticsearchAssertions.assertResponse(
948-
// client().prepareSearch(INDEX).setSource(sourceFilterAll),
949-
// resp -> assertThat(resp.getHits().getTotalHits().value(), equalTo(0L))
950-
// );
951-
952-
// // Scenario 5: Test with MinMax normalization
953-
// StandardRetrieverBuilder retrieverC = new StandardRetrieverBuilder(QueryBuilders.termQuery(TEXT_FIELD, "term1").boost(4.0f));
954-
// StandardRetrieverBuilder retrieverD = new StandardRetrieverBuilder(QueryBuilders.termQuery(TEXT_FIELD, "term2").boost(1.0f));
955-
956-
// ScoreNormalizer[] minMaxNormalizers = new ScoreNormalizer[] { MinMaxScoreNormalizer.INSTANCE, MinMaxScoreNormalizer.INSTANCE };
957-
958-
// LinearRetrieverBuilder builderWithNorm = new LinearRetrieverBuilder(
959-
// List.of(
960-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverC, null),
961-
// new CompoundRetrieverBuilder.RetrieverSource(retrieverD, null)
962-
// ),
963-
// rankWindowSize,
964-
// weights,
965-
// minMaxNormalizers
966-
// ).minScore(1.1f);
967-
968-
// SearchSourceBuilder sourceWithNorm = new SearchSourceBuilder().retriever(builderWithNorm).size(rankWindowSize);
969-
970-
// ElasticsearchAssertions.assertResponse(client().prepareSearch(INDEX).setSource(sourceWithNorm), resp -> {
971-
// // With MinMax normalization, we expect doc_2 and doc_3 to have scores > 1.1
972-
// assertThat(resp.getHits().getTotalHits().value(), equalTo(2L));
973-
// List<String> ids = Arrays.stream(resp.getHits().getHits()).map(h -> h.getId()).collect(Collectors.toList());
974-
// assertThat(ids, containsInAnyOrder("doc_2", "doc_3"));
975-
// });
859+
// final int rankWindowSize = 10;
860+
861+
// // Setup test data
862+
// indexDoc(INDEX, "doc_1", TEXT_FIELD, "term1", "views.last30d", 10, "views.all", 100);
863+
// indexDoc(INDEX, "doc_2", TEXT_FIELD, "term1 term2", "views.last30d", 20, "views.all", 200);
864+
// indexDoc(INDEX, "doc_3", TEXT_FIELD, "term1 term2 term3", "views.last30d", 30, "views.all", 300);
865+
// indexDoc(INDEX, "doc_4", TEXT_FIELD, "term4", "views.last30d", 40, "views.all", 400);
866+
// refresh(INDEX);
867+
868+
// // Create retrievers with different scoring
869+
// StandardRetrieverBuilder retrieverA = new StandardRetrieverBuilder(QueryBuilders.termQuery(TEXT_FIELD, "term1").boost(10.0f));
870+
// StandardRetrieverBuilder retrieverB = new StandardRetrieverBuilder(QueryBuilders.termQuery(TEXT_FIELD, "term2").boost(1.0f));
871+
872+
// float[] weights = new float[] { 1.0f, 1.0f };
873+
// ScoreNormalizer[] identityNormalizers = LinearRetrieverBuilder.getDefaultNormalizers(2);
874+
875+
// // Scenario 1: No min_score - all docs returned
876+
// LinearRetrieverBuilder builderNoMinScore = new LinearRetrieverBuilder(
877+
// List.of(
878+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverA, null),
879+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverB, null)
880+
// ),
881+
// rankWindowSize,
882+
// weights,
883+
// identityNormalizers
884+
// );
885+
886+
// SearchSourceBuilder sourceNoMinScore = new SearchSourceBuilder().retriever(builderNoMinScore).size(rankWindowSize);
887+
888+
// ElasticsearchAssertions.assertResponse(client().prepareSearch(INDEX).setSource(sourceNoMinScore), resp -> {
889+
// assertThat(resp.getHits().getTotalHits().value(), equalTo(3L)); // doc_1, doc_2, doc_3 match
890+
// assertThat(resp.getHits().getHits()[0].getId(), equalTo("doc_3")); // term1(10) + term2(1) = 11
891+
// assertThat(resp.getHits().getHits()[1].getId(), equalTo("doc_2")); // term1(10) + term2(1) = 11
892+
// assertThat(resp.getHits().getHits()[2].getId(), equalTo("doc_1")); // term1(10) = 10
893+
// });
894+
895+
// // Scenario 2: minScore = 0.0f - all matching docs returned (inclusive)
896+
// LinearRetrieverBuilder builderZeroMinScore = new LinearRetrieverBuilder(
897+
// List.of(
898+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverA, null),
899+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverB, null)
900+
// ),
901+
// rankWindowSize,
902+
// weights,
903+
// identityNormalizers
904+
// ).minScore(0.0f);
905+
906+
// SearchSourceBuilder sourceZeroMinScore = new SearchSourceBuilder().retriever(builderZeroMinScore).size(rankWindowSize);
907+
908+
// ElasticsearchAssertions.assertResponse(
909+
// client().prepareSearch(INDEX).setSource(sourceZeroMinScore),
910+
// resp -> assertThat(resp.getHits().getTotalHits().value(), equalTo(3L))
911+
// );
912+
913+
// // Scenario 3: Basic filtering - minScore = 10.5f
914+
// LinearRetrieverBuilder builderFilterBasic = new LinearRetrieverBuilder(
915+
// List.of(
916+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverA, null),
917+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverB, null)
918+
// ),
919+
// rankWindowSize,
920+
// weights,
921+
// identityNormalizers
922+
// ).minScore(10.5f);
923+
924+
// SearchSourceBuilder sourceFilterBasic = new SearchSourceBuilder().retriever(builderFilterBasic).size(rankWindowSize);
925+
926+
// ElasticsearchAssertions.assertResponse(client().prepareSearch(INDEX).setSource(sourceFilterBasic), resp -> {
927+
// assertThat(resp.getHits().getTotalHits().value(), equalTo(2L)); // doc_2 and doc_3 have score 11.0
928+
// List<String> ids = Arrays.stream(resp.getHits().getHits()).map(h -> h.getId()).collect(Collectors.toList());
929+
// assertThat(ids, containsInAnyOrder("doc_2", "doc_3"));
930+
// });
931+
932+
// // Scenario 4: Filter all documents - minScore = 20.0f
933+
// LinearRetrieverBuilder builderFilterAll = new LinearRetrieverBuilder(
934+
// List.of(
935+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverA, null),
936+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverB, null)
937+
// ),
938+
// rankWindowSize,
939+
// weights,
940+
// identityNormalizers
941+
// ).minScore(20.0f);
942+
943+
// SearchSourceBuilder sourceFilterAll = new SearchSourceBuilder().retriever(builderFilterAll).size(rankWindowSize);
944+
945+
// ElasticsearchAssertions.assertResponse(
946+
// client().prepareSearch(INDEX).setSource(sourceFilterAll),
947+
// resp -> assertThat(resp.getHits().getTotalHits().value(), equalTo(0L))
948+
// );
949+
950+
// // Scenario 5: Test with MinMax normalization
951+
// StandardRetrieverBuilder retrieverC = new StandardRetrieverBuilder(QueryBuilders.termQuery(TEXT_FIELD, "term1").boost(4.0f));
952+
// StandardRetrieverBuilder retrieverD = new StandardRetrieverBuilder(QueryBuilders.termQuery(TEXT_FIELD, "term2").boost(1.0f));
953+
954+
// ScoreNormalizer[] minMaxNormalizers = new ScoreNormalizer[] { MinMaxScoreNormalizer.INSTANCE, MinMaxScoreNormalizer.INSTANCE };
955+
956+
// LinearRetrieverBuilder builderWithNorm = new LinearRetrieverBuilder(
957+
// List.of(
958+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverC, null),
959+
// new CompoundRetrieverBuilder.RetrieverSource(retrieverD, null)
960+
// ),
961+
// rankWindowSize,
962+
// weights,
963+
// minMaxNormalizers
964+
// ).minScore(1.1f);
965+
966+
// SearchSourceBuilder sourceWithNorm = new SearchSourceBuilder().retriever(builderWithNorm).size(rankWindowSize);
967+
968+
// ElasticsearchAssertions.assertResponse(client().prepareSearch(INDEX).setSource(sourceWithNorm), resp -> {
969+
// // With MinMax normalization, we expect doc_2 and doc_3 to have scores > 1.1
970+
// assertThat(resp.getHits().getTotalHits().value(), equalTo(2L));
971+
// List<String> ids = Arrays.stream(resp.getHits().getHits()).map(h -> h.getId()).collect(Collectors.toList());
972+
// assertThat(ids, containsInAnyOrder("doc_2", "doc_3"));
973+
// });
976974
// }
977975
}

0 commit comments

Comments
 (0)