diff --git a/docs/reference/inference/inference-apis.asciidoc b/docs/reference/inference/inference-apis.asciidoc index 38afc7c416f18..037d7abeb2a36 100644 --- a/docs/reference/inference/inference-apis.asciidoc +++ b/docs/reference/inference/inference-apis.asciidoc @@ -35,21 +35,21 @@ Elastic –, then create an {infer} endpoint by the <>. Now use <> to perform <> on your data. -[discrete] -[[default-enpoints]] -=== Default {infer} endpoints +//[discrete] +//[[default-enpoints]] +//=== Default {infer} endpoints -Your {es} deployment contains some preconfigured {infer} endpoints that makes it easier for you to use them when defining `semantic_text` fields or {infer} processors. -The following list contains the default {infer} endpoints listed by `inference_id`: +//Your {es} deployment contains some preconfigured {infer} endpoints that makes it easier for you to use them when defining `semantic_text` fields or {infer} processors. +//The following list contains the default {infer} endpoints listed by `inference_id`: -* `.elser-2-elasticsearch`: uses the {ml-docs}/ml-nlp-elser.html[ELSER] built-in trained model for `sparse_embedding` tasks (recommended for English language texts) -* `.multilingual-e5-small-elasticsearch`: uses the {ml-docs}/ml-nlp-e5.html[E5] built-in trained model for `text_embedding` tasks (recommended for non-English language texts) +//* `.elser-2-elasticsearch`: uses the {ml-docs}/ml-nlp-elser.html[ELSER] built-in trained model for `sparse_embedding` tasks (recommended for English language texts) +//* `.multilingual-e5-small-elasticsearch`: uses the {ml-docs}/ml-nlp-e5.html[E5] built-in trained model for `text_embedding` tasks (recommended for non-English language texts) -Use the `inference_id` of the endpoint in a <> field definition or when creating an <>. -The API call will automatically download and deploy the model which might take a couple of minutes. -Default {infer} enpoints have {ml-docs}/ml-nlp-auto-scale.html#nlp-model-adaptive-allocations[adaptive allocations] enabled. -For these models, the minimum number of allocations is `0`. -If there is no {infer} activity that uses the endpoint, the number of allocations will scale down to `0` automatically after 15 minutes. +//Use the `inference_id` of the endpoint in a <> field definition or when creating an <>. +//The API call will automatically download and deploy the model which might take a couple of minutes. +//Default {infer} enpoints have {ml-docs}/ml-nlp-auto-scale.html#nlp-model-adaptive-allocations[adaptive allocations] enabled. +//For these models, the minimum number of allocations is `0`. +//If there is no {infer} activity that uses the endpoint, the number of allocations will scale down to `0` automatically after 15 minutes. [discrete]