From 3199f577136b5466cfb751c0f15c99024c624d95 Mon Sep 17 00:00:00 2001 From: shainaraskas <58563081+shainaraskas@users.noreply.github.com> Date: Fri, 25 Jul 2025 09:57:24 -0700 Subject: [PATCH] add availability information for rescore_vector (#131710) (cherry picked from commit 9c23d7386045bcbf9e52f2e153ff41a1ed8fb68b) --- docs/reference/elasticsearch/mapping-reference/dense-vector.md | 2 +- .../elasticsearch/rest-apis/retrievers/knn-retriever.md | 2 +- docs/reference/query-languages/query-dsl/query-dsl-knn-query.md | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/reference/elasticsearch/mapping-reference/dense-vector.md b/docs/reference/elasticsearch/mapping-reference/dense-vector.md index 7f3a701bde3f8..1acc9b2462031 100644 --- a/docs/reference/elasticsearch/mapping-reference/dense-vector.md +++ b/docs/reference/elasticsearch/mapping-reference/dense-vector.md @@ -273,7 +273,7 @@ $$$dense-vector-index-options$$$ : (Optional, float) Only applicable to `int8_hnsw`, `int4_hnsw`, `int8_flat`, and `int4_flat` index types. The confidence interval to use when quantizing the vectors. Can be any value between and including `0.90` and `1.0` or exactly `0`. When the value is `0`, this indicates that dynamic quantiles should be calculated for optimized quantization. When between `0.90` and `1.0`, this value restricts the values used when calculating the quantization thresholds. For example, a value of `0.95` will only use the middle 95% of the values when calculating the quantization thresholds (e.g. the highest and lowest 2.5% of values will be ignored). Defaults to `1/(dims + 1)` for `int8` quantized vectors and `0` for `int4` for dynamic quantile calculation. -`rescore_vector` +`rescore_vector` {applies_to}`stack: preview 9.0, ga 9.1` : (Optional, object) An optional section that configures automatic vector rescoring on knn queries for the given field. Only applicable to quantized index types. :::::{dropdown} Properties of rescore_vector `oversample` diff --git a/docs/reference/elasticsearch/rest-apis/retrievers/knn-retriever.md b/docs/reference/elasticsearch/rest-apis/retrievers/knn-retriever.md index 817f4d3fab681..12da522214383 100644 --- a/docs/reference/elasticsearch/rest-apis/retrievers/knn-retriever.md +++ b/docs/reference/elasticsearch/rest-apis/retrievers/knn-retriever.md @@ -60,7 +60,7 @@ A kNN retriever returns top documents from a [k-nearest neighbor search (kNN)](d Read more here: [knn similarity search](docs-content://solutions/search/vector/knn.md#knn-similarity-search) -`rescore_vector` +`rescore_vector` {applies_to}`stack: preview 9.0, ga 9.1` : (Optional, object) Apply oversampling and rescoring to quantized vectors. ::::{note} diff --git a/docs/reference/query-languages/query-dsl/query-dsl-knn-query.md b/docs/reference/query-languages/query-dsl/query-dsl-knn-query.md index ab2dd232eaf50..dee7fc8d47b88 100644 --- a/docs/reference/query-languages/query-dsl/query-dsl-knn-query.md +++ b/docs/reference/query-languages/query-dsl/query-dsl-knn-query.md @@ -97,7 +97,7 @@ The filter is a pre-filter, meaning that it is applied **during** the approximat : (Optional, float) The minimum similarity required for a document to be considered a match. The similarity value calculated relates to the raw [`similarity`](/reference/elasticsearch/mapping-reference/dense-vector.md#dense-vector-similarity) used. Not the document score. The matched documents are then scored according to [`similarity`](/reference/elasticsearch/mapping-reference/dense-vector.md#dense-vector-similarity) and the provided `boost` is applied. -`rescore_vector` +`rescore_vector` {applies_to}`stack: preview 9.0, ga 9.1` : (Optional, object) Apply oversampling and rescoring to quantized vectors. ::::{note}