Skip to content

Commit a1bab88

Browse files
committed
Updates phrasing when referring to pages
1 parent 7b7e8c7 commit a1bab88

12 files changed

+56
-56
lines changed

docs/en/stack/ml/anomaly-detection/ml-ad-run-jobs.asciidoc

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -33,8 +33,9 @@ a {dfeed} will be required.
3333
You can create {anomaly-jobs} by using the
3434
{ref}/ml-put-job.html[create {anomaly-jobs} API]. {kib} also provides
3535
wizards to simplify the process, which vary depending on whether you are using
36-
the {ml-app} app, {security-app} or {observability} apps. In *{ml-app}* >
37-
*Anomaly Detection*:
36+
the {ml-app} app, {security-app} or {observability} apps. To open *Anomaly Detection*,
37+
find *{ml-app}* in the main menu, or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar].
38+
In *{ml-app}* > *Anomaly Detection*:
3839

3940
[role="screenshot"]
4041
image::images/ml-create-job.png[Create New Job]

docs/en/stack/ml/anomaly-detection/ml-detect-categories.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ Avoid using human-generated data for categorization analysis.
3333
[[creating-categorization-jobs]]
3434
== Creating categorization jobs
3535

36-
. In {kib}, navigate to **{ml-app} > Anomaly Detection > Jobs**.
36+
. In {kib}, navigate to *Jobs*. To open *Jobs*, find **{ml-app} > Anomaly Detection** in the main menu, or or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar].
3737
. Click **Create job**, select the {data-view} you want to analyze.
3838
. Select the **Categorization** wizard from the list.
3939
. Choose a categorization detector - it's the `count` function in this example - and the field you want to categorize - the `message` field in this example.

docs/en/stack/ml/anomaly-detection/ml-jobs-from-visuals.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ NOTE: You need to have a compatible visualization on **Dashboard** to create an
4040
which is based on the {kib} sample flight data set. Select the `Flight count`
4141
visualization from the dashboard.
4242

43-
. Go to **Analytics > Dashboard** and select a dashboard with a compatible
43+
. Go to **Analytics > Dashboard** from the main menu, or or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar]. Select a dashboard with a compatible
4444
visualization.
4545
. Open the **Options (...) menu** for the panel, then select **More**.
4646
. Select **Create {anomaly-job}**. The option is only displayed if the

docs/en/stack/ml/anomaly-detection/ml-population-analysis.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ Population analysis is resource-efficient and scales well, enabling the analysis
2727
[[creating-population-jobs]]
2828
== Creating population jobs
2929

30-
. In {kib}, navigate to **{ml-app} > Anomaly Detection > Jobs**.
30+
. In {kib}, navigate to *Jobs*. To open *Jobs*, find **{ml-app} > Anomaly Detection** in the main menu, or or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar].
3131
. Click **Create job**, select the {data-source} you want to analyze.
3232
. Select the **Population** wizard from the list.
3333
. Choose a population field - it's the `clientip` field in this example - and the metric you want to use for the analysis - `Mean(bytes)` in this example.

docs/en/stack/ml/anomaly-detection/ml-revert-model-snapshot.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ resilience. It makes it possible to reset the model to a previous state in case
77
of a system failure or if the model changed significantly due to a one-off
88
event.
99

10-
. In {kib}, navigate to **{ml-app} > Anomaly Detection > Jobs**.
10+
. In {kib}, navigate to *Jobs*. To open *Jobs*, find **{ml-app} > Anomaly Detection** in the main menu, or or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar].
1111
. Locate the {anomaly-job} whose model you want to revert in the job table.
1212
. Open the job details and navigate to the **Model Snapshots** tab.
1313
+

docs/en/stack/ml/df-analytics/ml-dfa-shared.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
tag::dfa-deploy-model[]
22
. To deploy {dfanalytics} model in a pipeline, navigate to **Machine Learning** >
3-
**Model Management** > **Trained models** in {kib}.
3+
**Model Management** > **Trained models**, or or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar] in {kib}.
44
55
. Find the model you want to deploy in the list and click **Deploy model** in
66
the **Actions** menu.

docs/en/stack/ml/get-started/ml-gs-results.asciidoc

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ request rate on your web site drops significantly.
3434

3535
Let's start by looking at this simple job in the **Single Metric Viewer**:
3636

37-
. Select the *Anomaly Detection* tab in *{ml-app}* to see the list of your
37+
. Select the *Jobs* tab in *{ml-app}* to see the list of your
3838
{anomaly-jobs}.
3939

4040
. Click the chart icon in the *Actions* column for your `low_request_rate` job
@@ -151,7 +151,7 @@ look at both high and low request rates partitioned by response code.
151151
Let's start by looking at the `response_code_rates` job in the
152152
**Anomaly Explorer**:
153153

154-
. Select the *Anomaly Detection* tab in *{ml-app}* to see the list of your
154+
. Select the *Jobs* tab in *{ml-app}* to see the list of your
155155
{anomaly-jobs}.
156156

157157
. Open the `response_code_rates` job in the Anomaly Explorer to view its results

docs/en/stack/ml/get-started/ml-gs-visualizer.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ exception for your {kib} URL.
1717

1818
--
1919

20-
. Click *Machine Learning* in the {kib} main menu.
20+
. Open the *Machine Learning* page in {kib}. Find *Machine Learning* in the main menu, or or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar].
2121

2222
. Select the *{data-viz}* tab.
2323

docs/en/stack/ml/nlp/ml-nlp-e5.asciidoc

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ NOTE: For most cases, the preferred version is the **Intel and Linux optimized**
9292
[[trained-model-e5]]
9393
==== Using the Trained Models page
9494
95-
1. In {kib}, navigate to **{ml-app}** > **Trained Models**. E5 can be found in
95+
1. In {kib}, navigate to **{ml-app}** > **Trained Models** from the main menu, or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar]. E5 can be found in
9696
the list of trained models. There are two versions available: one portable
9797
version which runs on any hardware and one version which is optimized for Intel®
9898
silicon. You can see which model is recommended to use based on your hardware
@@ -250,7 +250,7 @@ xpack.ml.model_repository: file://${path.home}/config/models/`
250250
. Repeat step 2 and step 3 on all master-eligible nodes.
251251
. {ref}/restart-cluster.html#restart-cluster-rolling[Restart] the
252252
master-eligible nodes one by one.
253-
. Navigate to the **Trained Models** page in {kib}, E5 can be found in the
253+
. Navigate to the **Trained Models** page from the main menu, or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar] in {kib}. E5 can be found in the
254254
list of trained models.
255255
. Click the **Add trained model** button, select the E5 model version you
256256
downloaded in step 1 and want to deploy and click **Download**. The selected

docs/en/stack/ml/nlp/ml-nlp-elser.asciidoc

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -350,7 +350,7 @@ master-eligible nodes can reach the server you specify.
350350
. Repeat step 5 on all master-eligible nodes.
351351
. {ref}/restart-cluster.html#restart-cluster-rolling[Restart] the
352352
master-eligible nodes one by one.
353-
. Navigate to the **Trained Models** page in {kib}, ELSER can be found in the
353+
. Navigate to the **Trained Models** page from the main menu, or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar] in {kib}. ELSER can be found in the
354354
list of trained models.
355355
. Click the **Add trained model** button, select the ELSER model version you
356356
downloaded in step 1 and want to deploy, and click **Download**. The selected
@@ -390,7 +390,7 @@ xpack.ml.model_repository: file://${path.home}/config/models/`
390390
. Repeat step 2 and step 3 on all master-eligible nodes.
391391
. {ref}/restart-cluster.html#restart-cluster-rolling[Restart] the
392392
master-eligible nodes one by one.
393-
. Navigate to the **Trained Models** page in {kib}, ELSER can be found in the
393+
. Navigate to the **Trained Models** page from the main menu, or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar] in {kib}. ELSER can be found in the
394394
list of trained models.
395395
. Click the **Add trained model** button, select the ELSER model version you
396396
downloaded in step 1 and want to deploy and click **Download**. The selected
@@ -406,7 +406,7 @@ allocations and threads per allocation values.
406406
== Testing ELSER
407407

408408
You can test the deployed model in {kib}. Navigate to **Model Management** >
409-
**Trained Models**, locate the deployed ELSER model in the list of trained
409+
**Trained Models** from the main menu, or use the {kibana-ref}/kibana-concepts-analysts.html#_finding_your_apps_and_objects[global search bar] in {kib}. Locate the deployed ELSER model in the list of trained
410410
models, then select **Test model** from the Actions menu.
411411

412412
You can use data from an existing index to test the model. Select the index,

0 commit comments

Comments
 (0)