|
1 | 1 | #include "build.hpp" |
2 | 2 |
|
3 | | -void build_graph(Tensor input, Tensor output) { |
| 3 | +void build_graph(Tensor& input, Tensor& output) { |
4 | 4 | std::vector<std::shared_ptr<Layer>> layers; |
5 | 5 |
|
6 | 6 | std::string json_file = MODEL_PATH; |
@@ -35,38 +35,38 @@ void build_graph(Tensor input, Tensor output) { |
35 | 35 |
|
36 | 36 | if (layer_type.find("Dense") != std::string::npos) { |
37 | 37 | Tensor tmp_values = tensor; |
38 | | - std::vector<float> Values_vector = *tensor.as<float>(); |
39 | | - std::vector<std::vector<float>> Values_vector_2d( |
| 38 | + std::vector<float> values_vector = *tensor.as<float>(); |
| 39 | + std::vector<std::vector<float>> values_vector_2d( |
40 | 40 | tensor.get_shape()[0], |
41 | 41 | std::vector<float>(tensor.get_shape()[1], 0.0f)); |
42 | 42 | int q = 0; |
43 | | - for (size_t i = 0; i < Values_vector.size(); i++) { |
44 | | - Values_vector_2d[q][i - (q * tensor.get_shape()[1])] = Values_vector[i]; |
| 43 | + for (size_t i = 0; i < values_vector.size(); i++) { |
| 44 | + values_vector_2d[q][i - (q * tensor.get_shape()[1])] = values_vector[i]; |
45 | 45 | if ((i + 1) % tensor.get_shape()[1] == 0) { |
46 | 46 | q++; |
47 | 47 | } |
48 | 48 | } |
49 | | - std::vector<std::vector<float>> Values_vector_2d_2( |
| 49 | + std::vector<std::vector<float>> values_vector_2d_2( |
50 | 50 | tensor.get_shape()[1], |
51 | 51 | std::vector<float>(tensor.get_shape()[0], 0.0f)); |
52 | 52 |
|
53 | 53 | for (size_t i = 0; i < tensor.get_shape()[0]; ++i) { |
54 | 54 | for (size_t j = 0; j < tensor.get_shape()[1]; ++j) { |
55 | | - Values_vector_2d_2[j][i] = Values_vector_2d[i][j]; |
| 55 | + values_vector_2d_2[j][i] = values_vector_2d[i][j]; |
56 | 56 | } |
57 | 57 | } |
58 | | - std::vector<float> Values_vector_1d( |
59 | | - tensor.get_shape()[0] * tensor.get_shape()[1], 0.0f); |
| 58 | + std::vector<float> values_vector_1d( |
| 59 | + tensor.get_shape()[0] * tensor.get_shape()[1], 0.0F); |
60 | 60 | int index_1d = 0; |
61 | 61 |
|
62 | 62 | for (size_t j = 0; j < tensor.get_shape()[1]; ++j) { |
63 | 63 | for (size_t k = 0; k < tensor.get_shape()[0]; ++k) { |
64 | | - Values_vector_1d[index_1d++] = Values_vector_2d_2[j][k]; |
| 64 | + values_vector_1d[index_1d++] = values_vector_2d_2[j][k]; |
65 | 65 | } |
66 | 66 | } |
67 | 67 |
|
68 | 68 | Shape shape_fc({tensor.get_shape()[1], tensor.get_shape()[0]}); |
69 | | - Tensor values = make_tensor<float>(Values_vector_1d, shape_fc); |
| 69 | + Tensor values = make_tensor<float>(values_vector_1d, shape_fc); |
70 | 70 | Tensor tmp_bias = make_tensor(tensor.get_bias()); |
71 | 71 |
|
72 | 72 | auto fc_layer = std::make_shared<FCLayer>(values, tmp_bias); |
|
0 commit comments