Skip to content

Commit 28df4a2

Browse files
author
Jinho Choi
committed
Added JSON.
0 parents  commit 28df4a2

File tree

6 files changed

+127638
-0
lines changed

6 files changed

+127638
-0
lines changed

LICENSE.txt

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
Copyright 2017, Emory University
2+
3+
Licensed under the Apache License, Version 2.0 (the "License");
4+
you may not use this file except in compliance with the License.
5+
You may obtain a copy of the License at
6+
7+
http://www.apache.org/licenses/LICENSE-2.0
8+
9+
Unless required by applicable law or agreed to in writing, software
10+
distributed under the License is distributed on an "AS IS" BASIS,
11+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
See the License for the specific language governing permissions and
13+
limitations under the License.

README.md

Lines changed: 78 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,78 @@
1+
# Emotion Detection
2+
3+
Emotion detection aims to classify a fine-grained emotion for each utterance in multiparty dialogue.
4+
Currently, our annotation is based on the primary emotions in the Feeling Wheel (Willcox, 1982).
5+
This task is a part of the [Character Mining](../../../character-mining) project led by the [Emory NLP](http://nlp.mathcs.emory.edu) research group.
6+
7+
<p align="center">
8+
<img height="500" src="http://ct.counseling.org/wp-content/uploads/2017/08/SPIRAL-624x623.jpg">
9+
</p>
10+
11+
12+
## Dataset
13+
14+
Each utterance is annotated with one of the seven emotions, *sad*, *mad*, *scared*, *powerful*, *peaceful*, *joyful*, and *neutral*.
15+
16+
* Latest release: v1.0.
17+
* [Release notes](doc/release-notes.md).
18+
19+
## Statistics
20+
21+
The following episodes are used for the training, development, and evaluation sets:
22+
23+
* Train (TRN): [s01\_e02, s01\_e03, s01\_e04, s01\_e05, s01\_e06, s01\_e07, s01\_e08, s01\_e09, s01\_e11, s01\_e12, s01\_e13, s01\_e14, s01\_e16, s01\_e17, s01\_e18, s01\_e19, s01\_e21, s01\_e22, s01\_e23, s01\_e24, s02\_e01, s02\_e02, s02\_e03, s02\_e04, s02\_e05, s02\_e06, s02\_e07, s02\_e09, s02\_e11, s02\_e12, s02\_e13, s02\_e14, s02\_e15, s02\_e16, s02\_e17, s02\_e18, s02\_e19, s02\_e21, s02\_e22, s02\_e24, s03\_e02, s03\_e03, s03\_e04, s03\_e05, s03\_e06, s03\_e07, s03\_e10, s03\_e11, s03\_e12, s03\_e13, s03\_e14, s03\_e15, s03\_e16, s03\_e17, s03\_e18, s03\_e19, s03\_e22, s03\_e23, s03\_e24, s03\_e25, s04\_e03, s04\_e04, s04\_e05, s04\_e07, s04\_e08, s04\_e09, s04\_e11, s04\_e12, s04\_e13, s04\_e14, s04\_e15, s04\_e16, s04\_e18, s04\_e19, s04\_e22, s04\_e23, s04\_e24]
24+
* Development (DEV): [s01\_e15, s01\_e20, s02\_e10, s02\_e20, s03\_e01, s03\_e09, s03\_e21, s04\_e01, s04\_e06, s04\_e10, s04\_e21]
25+
* Evaluation (TST): [s01\_e01, s01\_e10, s02\_e08, s02\_e23, s03\_e08, s03\_e20, s04\_e02, s04\_e17, s04\_e20]
26+
27+
| Dataset | Episodes | Scenes | Utterances | Neutral | Joyful | Peaceful | Powerful | Scared | Mad | Sad | Total |
28+
|:-------:|---------:|-------:|-----------:|--------:|-------:|---------:|---------:|-------:|------:|----:|-------:|
29+
| TRN | 77 | 713 | 9,934 | 3,034 | 2,184 | 900 | 784 | 1,285 | 1,076 | 671 | 9,934 |
30+
| DEV | 11 | 99 | 1,344 | 393 | 289 | 132 | 134 | 178 | 143 | 75 | 1,344 |
31+
| TST | 9 | 85 | 1,328 | 349 | 282 | 159 | 145 | 182 | 113 | 98 | 1,328 |
32+
| Total | 97 | 897 | 12,606 | 3,776 | 2,755 | 1,191 | 1,063 | 1,645 | 1,332 | 844 | 12,606 |
33+
34+
## Annotation
35+
36+
Each utterance has the field `emotion`.
37+
Three utterances in the following example are annotated with the emotions of *Neutral*, *Joyful*, and *Powerful*, respectively.
38+
39+
```json
40+
{
41+
"utterance_id": "s01_e02_c01_u002",
42+
"speakers": ["Joey Tribbiani"],
43+
"transcript": "Yeah, right!.......Y'serious?",
44+
"tokens": [
45+
["Yeah", ",", "right", "!"],
46+
["......."],
47+
["Y'serious", "?"]
48+
],
49+
"emotion": "Neutral"
50+
},
51+
{
52+
"utterance_id": "s01_e02_c01_u003",
53+
"speakers": ["Phoebe Buffay"],
54+
"transcript": "Oh, yeah!",
55+
"tokens": [
56+
["Oh", ",", "yeah", "!"]
57+
],
58+
"emotion": "Joyful"
59+
},
60+
{
61+
"utterance_id": "s01_e02_c01_u004",
62+
"speakers": ["Rachel Green"],
63+
"transcript": "Everything you need to know is in that first kiss.",
64+
"tokens": [
65+
["Everything", "you", "need", "to", "know", "is", "in", "that", "first", "kiss", "."]
66+
],
67+
"emotion": "Powerful"
68+
}
69+
```
70+
71+
## Citation
72+
73+
* [Emotion Detection on TV Show Transcripts with Sequence-based Convolutional Neural Networks](https://arxiv.org/abs/1708.04299). Sayyed Zahiri and Jinho D. Choi. In The AAAI Workshop on Affective Content Analysis, AFFCON'18, 2018.
74+
75+
76+
## Contact
77+
78+
* [Jinho D. Choi](http://www.mathcs.emory.edu/~choi).

doc/release-notes.md

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
# Release Notes
2+
3+
## Version 1.0 (May, 2017)
4+
5+
* Each utterance is annotated with one of the seven emotion, , *sad*, *mad*, *scared*, *powerful*, *peaceful*, *joyful*, and *neutral*.
6+
* See our [AFFCON'17](https://arxiv.org/abs/1708.04299) paper for more details.

0 commit comments

Comments
 (0)