|
| 1 | +#!/usr/bin/env python |
| 2 | +# -*- coding: UTF-8 -* |
| 3 | + |
| 4 | +from __future__ import absolute_import |
| 5 | +from __future__ import division |
| 6 | +from __future__ import print_function |
| 7 | + |
| 8 | +import _init_paths |
| 9 | +import matplotlib |
| 10 | +matplotlib.use('Agg') |
| 11 | +from model.config import cfg |
| 12 | +from model.test import im_detect |
| 13 | +from model.nms_wrapper import nms |
| 14 | + |
| 15 | +from utils.timer import Timer |
| 16 | +import tensorflow as tf |
| 17 | +from matplotlib.font_manager import FontProperties |
| 18 | +zhfont1 = matplotlib.font_manager.FontProperties(fname='/usr/share/fonts/opentype/noto/NotoSansCJK-Bold.ttc') |
| 19 | +import matplotlib.pyplot as plt |
| 20 | +import numpy as np |
| 21 | +import os, cv2 |
| 22 | +import argparse |
| 23 | + |
| 24 | +import csv |
| 25 | +import time |
| 26 | + |
| 27 | +from nets.vgg16 import vgg16 |
| 28 | +from nets.resnet_v1_rfcn_hole import resnetv1 |
| 29 | +import sys |
| 30 | +reload(sys) |
| 31 | +sys.setdefaultencoding('utf8') |
| 32 | + |
| 33 | + |
| 34 | +CLASSES = ('__background__', |
| 35 | + 'dr0', 'dr1', 'dr2', 'dr3') |
| 36 | + |
| 37 | +NETS = {'vgg16': ('vgg16_faster_rcnn_iter_70000.ckpt',),'res101': ('res101_faster_rcnn_iter_200000.ckpt',)} |
| 38 | +DATASETS= {'pascal_voc': ('voc_2007_trainval',),'pascal_voc_0712': ('voc_2007_trainval+voc_2012_trainval',)} |
| 39 | +localtime = time.asctime( time.localtime(time.time()) ) |
| 40 | + |
| 41 | +#thresh在demo()设置了CONF_THRESH=0.8只有概率大于0.8才会显示 |
| 42 | +#inds被保留的区块序号,区块信息在dets里 |
| 43 | +def vis_detections(im, class_name, dets, thresh=0.5 ,image_name='null'): |
| 44 | + """Draw detected bounding boxes.""" |
| 45 | + inds = np.where(dets[:, -1] >= thresh)[0] |
| 46 | + if len(inds) == 0: |
| 47 | + tm=[0,0,2,2] |
| 48 | + return 0,0,tm,thresh |
| 49 | + #print(inds) |
| 50 | + #im = im[:, :, (2, 1, 0)] |
| 51 | + #fig, ax = plt.subplots(figsize=(12, 12)) |
| 52 | + #ax.imshow(im, aspect='equal') |
| 53 | + temp=0 |
| 54 | + maxscore = max(dets[:, -1]) |
| 55 | + for i in inds: |
| 56 | + bbox = dets[i, :4] |
| 57 | + score = dets[i, -1] |
| 58 | + if score==maxscore: |
| 59 | + return class_name,score,bbox,thresh |
| 60 | + #ax.add_patch(plt.Rectangle((bbox[0], bbox[1]),bbox[2] - bbox[0],bbox[3] - bbox[1], fill=False,edgecolor='red', linewidth=3.5)) |
| 61 | + #ax.text(bbox[0], bbox[1] - 2,'{:s} {:.3f}'.format(class_name, score),bbox=dict(facecolor='blue', alpha=0.5),fontsize=14, color='white') |
| 62 | + |
| 63 | + #ax.set_title(('{} detection results p({} | box) >= {:.1f}').format(class_name, class_name,thresh),fontsize=14) |
| 64 | + #plt.axis('off') |
| 65 | + #plt.tight_layout() |
| 66 | + #plt.draw() |
| 67 | + #plt.savefig("/var/www/html/figure/"+image_name) |
| 68 | + |
| 69 | +def vis_detections_onlyone(im, class_name, dets, thresh=0.5): |
| 70 | + """Draw detected bounding boxes.""" |
| 71 | + inds = np.where(dets[:, -1] >= thresh)[0] |
| 72 | + if len(inds) == 0: |
| 73 | + return |
| 74 | + im = im[:, :, (2, 1, 0)] |
| 75 | + fig, ax = plt.subplots(figsize=(12, 12)) |
| 76 | + ax.imshow(im, aspect='equal') |
| 77 | + maxscore = max(dets[:, -1]) |
| 78 | + for i in inds: |
| 79 | + bbox = dets[i, :4] |
| 80 | + score = dets[i, -1] |
| 81 | + if score==maxscore: |
| 82 | + ax.add_patch(plt.Rectangle((bbox[0], bbox[1]),bbox[2] - bbox[0],bbox[3] - bbox[1], fill=False,edgecolor='red', linewidth=3.5)) |
| 83 | + ax.text(bbox[0], bbox[1] - 2,'{:s} {:.3f}'.format(class_name, score),bbox=dict(facecolor='blue', alpha=0.5),fontsize=14, color='white') |
| 84 | + |
| 85 | + ax.set_title(('{} detection results ' |
| 86 | + 'p({} | box) >= {:.1f}').format(class_name, class_name, |
| 87 | + thresh), |
| 88 | + fontsize=14) |
| 89 | + plt.axis('off') |
| 90 | + plt.tight_layout() |
| 91 | + plt.draw() |
| 92 | + |
| 93 | +def demo(sess, net, image_name): |
| 94 | + """Detect object classes in an image using pre-computed object proposals.""" |
| 95 | + |
| 96 | + # Load the demo image |
| 97 | + im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) |
| 98 | + im = cv2.imread(im_file) |
| 99 | + |
| 100 | + # Detect all object classes and regress object bounds |
| 101 | + # im_dect at test.py |
| 102 | + timer = Timer() |
| 103 | + timer.tic() |
| 104 | + scores, boxes = im_detect(sess, net, im) |
| 105 | + #print(scores) |
| 106 | + #print(boxes) |
| 107 | + timer.toc() |
| 108 | + print('检测区域采样时间 {:.3f}s 共计 {:d} 个目标区块'.format(timer.total_time, boxes.shape[0])) |
| 109 | + |
| 110 | + # Visualize detections for each class |
| 111 | + CONF_THRESH = 0.5 |
| 112 | + NMS_THRESH = 0.3 |
| 113 | + #enumerate枚举 hstack矩阵拼接 keep记录nms筛选后的区块 dets保存的每个区块的(x1 y1 x2 y2 score)格式list |
| 114 | + b=0 |
| 115 | + e='error' |
| 116 | + f=[0,0,2,2] |
| 117 | + for cls_ind, cls in enumerate(CLASSES[1:]): |
| 118 | + cls_ind += 1 # because we skipped background |
| 119 | + cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] |
| 120 | + cls_scores = scores[:, cls_ind] |
| 121 | + dets = np.hstack((cls_boxes, |
| 122 | + cls_scores[:, np.newaxis])).astype(np.float32) |
| 123 | + keep = nms(dets, NMS_THRESH) |
| 124 | + #print(keep) |
| 125 | + dets = dets[keep, :] |
| 126 | + a=image_name |
| 127 | + c,d,g,t=vis_detections(im, cls, dets, thresh=CONF_THRESH, image_name=a) |
| 128 | + if (c==0 and d==0): |
| 129 | + 1+1 |
| 130 | + else: |
| 131 | + if (d>b): |
| 132 | + b=d |
| 133 | + e=c |
| 134 | + f=g |
| 135 | + if (e=='dr0'): |
| 136 | + e='正常人dr0' |
| 137 | + if (e=='dr1'): |
| 138 | + e='轻度患者dr1' |
| 139 | + if (e=='dr2'): |
| 140 | + e='中度患者dr2' |
| 141 | + if (e=='dr3'): |
| 142 | + e='重度患者dr3' |
| 143 | + if (e=='dr4'): |
| 144 | + e='增殖患者dr4' |
| 145 | + print(e,b) |
| 146 | + im = im[:, :, (2, 1, 0)] |
| 147 | + fig, ax = plt.subplots(figsize=(8, 6)) |
| 148 | + ax.imshow(im, aspect='equal') |
| 149 | + ax.add_patch(plt.Rectangle((f[0], f[1]),f[2] - f[0],f[3] - f[1], fill=False,edgecolor='red', linewidth=3.5)) |
| 150 | + ax.text(f[0], f[1] + 25,'{:s} {:.3f}'.format(e, b),bbox=dict(facecolor='blue', alpha=0.5),fontsize=14, color='white',fontproperties=zhfont1) |
| 151 | + |
| 152 | + ax.set_title(('辅助诊断结果:{} p({} | box) >= {:.1f}').format(e, e,t),fontsize=14,fontproperties=zhfont1) |
| 153 | + plt.axis('off') |
| 154 | + plt.tight_layout() |
| 155 | + plt.draw() |
| 156 | + #plt.savefig("/var/www/html/figure/"+image_name) |
| 157 | + plt.savefig("figure/"+localtime+image_name) |
| 158 | + filer=open('results/result'+localtime,'a+') |
| 159 | + filer.write(image_name+' '+e+' '+str(b)+'\n') |
| 160 | + filer.close |
| 161 | + |
| 162 | +def parse_args(): |
| 163 | + """Parse input arguments.""" |
| 164 | + parser = argparse.ArgumentParser(description='Tensorflow demo') |
| 165 | + parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16 res101]', |
| 166 | + choices=NETS.keys(), default='res101') |
| 167 | + parser.add_argument('--dataset', dest='dataset', help='Trained dataset [pascal_voc pascal_voc_0712]', |
| 168 | + choices=DATASETS.keys(), default='pascal_voc') |
| 169 | + args = parser.parse_args() |
| 170 | + |
| 171 | + return args |
| 172 | + |
| 173 | +def csv_writer(data, filename): |
| 174 | + with open(filename, "wb") as csv_file: |
| 175 | + writer = csv.writer(csv_file) |
| 176 | + for line in data: |
| 177 | + writer.writerow(line) |
| 178 | + |
| 179 | +if __name__ == '__main__': |
| 180 | + cfg.TEST.HAS_RPN = True # Use RPN for proposals |
| 181 | + args = parse_args() |
| 182 | + |
| 183 | + # model path |
| 184 | + demonet = args.demo_net |
| 185 | + dataset = args.dataset |
| 186 | + tfmodel = os.path.join('output', demonet, DATASETS[dataset][0], 'default', |
| 187 | + NETS[demonet][0]) |
| 188 | + |
| 189 | + |
| 190 | + if not os.path.isfile(tfmodel + '.meta'): |
| 191 | + raise IOError(('{:s} not found.\nDid you download the proper networks from ' |
| 192 | + 'our server and place them properly?').format(tfmodel + '.meta')) |
| 193 | + |
| 194 | + # set config |
| 195 | + tfconfig = tf.ConfigProto(allow_soft_placement=True) |
| 196 | + tfconfig.gpu_options.allow_growth=True |
| 197 | + print ("\033[1;34mThe code is licensed by engineer1109.") |
| 198 | + #print ("\033[1;34m开始初始化系统") |
| 199 | + # init session |
| 200 | + sess = tf.Session(config=tfconfig) |
| 201 | + #print ("\033[1;33m卷积模型开始加载,默认是RES101") |
| 202 | + # load network |
| 203 | + if demonet == 'vgg16': |
| 204 | + net = vgg16(batch_size=1) |
| 205 | + elif demonet == 'res101': |
| 206 | + net = resnetv1(batch_size=1, num_layers=101) |
| 207 | + else: |
| 208 | + raise NotImplementedError |
| 209 | + #print(demonet) |
| 210 | + net.create_architecture(sess, "TEST", 5, |
| 211 | + tag='default', anchor_scales=[8, 16, 32]) |
| 212 | + saver = tf.train.Saver() |
| 213 | + saver.restore(sess, tfmodel) |
| 214 | + #print(saver.restore(sess, tfmodel)) |
| 215 | + |
| 216 | + #print('网络加载完毕 {:s}'.format(tfmodel)) |
| 217 | + result=[] |
| 218 | + fd = file("images.txt", "r" ) |
| 219 | + for line in fd.readlines(): |
| 220 | + result.append(list(map(str,line.split(',')))) |
| 221 | + #print (result) |
| 222 | + print ("欢迎使用TF-RFCN测试模式</br>") |
| 223 | + print ("总共需要辨识的图片数量</br>") |
| 224 | + size=len(result) |
| 225 | + print (size) |
| 226 | + image_name = [1]*size |
| 227 | + for i in range(size): |
| 228 | + var=str(result[i][0]) |
| 229 | + var=var.strip() |
| 230 | + image_name[i]=var |
| 231 | + #print (image_name) |
| 232 | + #print(type(result)) |
| 233 | + for image_name in image_name: |
| 234 | + print('</br>=======================</br>') |
| 235 | + print('====测试-TF-RFCN====</br>') |
| 236 | + print('测试数据 data/demo/{}</br>'.format(image_name)) |
| 237 | + demo(sess, net, image_name) |
| 238 | + data = [] |
| 239 | + data2=[] |
| 240 | + with open('results/result'+localtime) as f: |
| 241 | + for line in f: |
| 242 | + data2.append(line.strip().split(" ")) |
| 243 | + #print('</br>概率分布</br>') |
| 244 | + #print (data2) |
| 245 | + filename = "csvfiles/output"+localtime+".csv" |
| 246 | + csv_writer(data2, filename) |
| 247 | + filename = "output.csv" |
| 248 | + csv_writer(data2, filename) |
| 249 | + #plt.show() |
0 commit comments