Skip to content

Commit e165e79

Browse files
committed
Post-lecture fixes
1 parent ee8e988 commit e165e79

File tree

5 files changed

+16
-16
lines changed

5 files changed

+16
-16
lines changed

src/01_Introduction.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,13 @@
11
### A Pluto.jl notebook ###
2-
# v0.20.4
2+
# v0.20.6
33

44
using Markdown
55
using InteractiveUtils
66

77
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
88
macro bind(def, element)
99
#! format: off
10-
quote
10+
return quote
1111
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
1212
local el = $(esc(element))
1313
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)

src/05_Interpolation.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
### A Pluto.jl notebook ###
2-
# v0.20.5
2+
# v0.20.6
33

44
using Markdown
55
using InteractiveUtils

src/09_Numerical_integration.jl

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
### A Pluto.jl notebook ###
2-
# v0.20.5
2+
# v0.20.6
33

44
using Markdown
55
using InteractiveUtils
@@ -107,9 +107,9 @@ and **then integrate that** instead of $f$ itself.
107107
Since the integration of the polynomial is essentially exact,
108108
the error of such a scheme is **dominated by the error of the polynomial
109109
interpolation**.
110-
As we found out in [the chapter on Interpolation](https://teaching.matmat.org/numerical-analysis/05_Interpolation.html) polynomials
111-
through equispaced nodes become rather inaccurate for large $n$
112-
due to Runge's phaenomenon.
110+
Recall the [chapter on Interpolation](https://teaching.matmat.org/numerical-analysis/05_Interpolation.html), where we noted polynomials
111+
through equispaced nodes to become numerically unstable and
112+
possibly inaccurate for large $n$ due to Runge's phaenomenon.
113113
114114
Therefore we will pursue **piecewise linear polynomial interpolation**
115115
instead of fitting an $n$-th degree polynomial.
@@ -140,9 +140,9 @@ let
140140
plot!(p, [a + i * h, a + i * h], [0, f(a + i * h)];
141141
ls=:dash, c=:black, label="", lw=1.5)
142142
end
143-
annotate!(p, [(a, -0.5, L"t_0"),
143+
annotate!(p, [(a, -0.5, L"a = t_0"),
144144
(a+h, -0.5, L"t_1"),
145-
(a+n*h, -0.5, L"t_n")])
145+
(a+n*h, -0.5, L"t_n = b")])
146146

147147
ylims!(p, (-0.9, 10.5))
148148
p
@@ -1219,7 +1219,7 @@ QuadGK = "~2.11.2"
12191219
PLUTO_MANIFEST_TOML_CONTENTS = """
12201220
# This file is machine-generated - editing it directly is not advised
12211221
1222-
julia_version = "1.11.4"
1222+
julia_version = "1.11.5"
12231223
manifest_format = "2.0"
12241224
project_hash = "0b137bedfe8a154be757099565fbd14062a17cca"
12251225
@@ -1760,7 +1760,7 @@ version = "0.3.27+1"
17601760
[[deps.OpenLibm_jll]]
17611761
deps = ["Artifacts", "Libdl"]
17621762
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
1763-
version = "0.8.1+4"
1763+
version = "0.8.5+0"
17641764
17651765
[[deps.OpenSSL]]
17661766
deps = ["BitFlags", "Dates", "MozillaCACerts_jll", "OpenSSL_jll", "Sockets"]

src/10_Numerical_differentiation.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
### A Pluto.jl notebook ###
2-
# v0.20.5
2+
# v0.20.6
33

44
using Markdown
55
using InteractiveUtils

src/11_Initial_value_problems.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
### A Pluto.jl notebook ###
2-
# v0.20.5
2+
# v0.20.6
33

44
using Markdown
55
using InteractiveUtils
@@ -568,7 +568,7 @@ More precisely one can formulate:
568568
where $C > 0$ and $L > 0$ are constants.
569569
570570
We note:
571-
- If the local truncation error ^{(n)}_h$ converges with order $p$, then the one-step methods also converges globally with order $p$.
571+
- If the local truncation error ^{(n)}_h$ converges with order $p$, then the explicit methods also converges globally with order $p$.
572572
- However, the global error has an **additional prefactor** $(e^{L (t_n-a)} -1)$, which **grows exponentially in time**. This is an effect of the accumulation of error from one time step to the next. In particular if $b \gg a$ or results can get rather inaccurate **even for higher-order methods** beyond Forward Euler where $p > 1$. This point we will pick up in the section on *Stability and implicit methods* below.
573573
- For Theorem 2 to hold there are a few more details to consider (e.g. problem (1) should have a unique solution). More information can be unfolded below.
574574
"""
@@ -1518,7 +1518,7 @@ PlutoUI = "~0.7.62"
15181518
PLUTO_MANIFEST_TOML_CONTENTS = """
15191519
# This file is machine-generated - editing it directly is not advised
15201520
1521-
julia_version = "1.11.4"
1521+
julia_version = "1.11.5"
15221522
manifest_format = "2.0"
15231523
project_hash = "073d0fedb2bdd79c9801f78082bc44acadfdc9ec"
15241524
@@ -2914,7 +2914,7 @@ version = "0.3.27+1"
29142914
[[deps.OpenLibm_jll]]
29152915
deps = ["Artifacts", "Libdl"]
29162916
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
2917-
version = "0.8.1+4"
2917+
version = "0.8.5+0"
29182918
29192919
[[deps.OpenSSL]]
29202920
deps = ["BitFlags", "Dates", "MozillaCACerts_jll", "OpenSSL_jll", "Sockets"]

0 commit comments

Comments
 (0)