-
Notifications
You must be signed in to change notification settings - Fork 100
Open
Description
If you have the following grid:
GRID
COORD
0.1 0.1 0.1 0.1 0.1 100
50 0.1 0.1 50 0.1 100
100 0.1 0.1 100 0.1 100
0.1 50 0.1 0.1 50 100
10 10 0.1 10 10 100
100 50 0.1 100 50 100
0.1 100 0.1 0.1 100 100
50 100 0.1 50 100 100
100 100 0.1 100 100 100
/
ZCORN
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
50 50 50 50
50 50 50 50
50 50 50 50
50 50 50 50
50 50 50 50
50 50 50 50
50 50 50 50
50 50 50 50
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
/
Then find_cell will think some points in cell at i,jk=(1,1,0) is actually in i,j,k=(0,0,0):
In [1]: import resdata.grid
In [2]: grid = resdata.grid.Grid("tests/data/eightcells/EIGHTCELLS.EGRID")
In [3]: grid.find_cell(11.0, 11.0, 0.1)
Out[3]: (0, 0, 0)
In [4]: grid.find_cell(11.1, 11.1, 0.1)
Out[4]: (0, 0, 0)
In [5]: grid[0,0,0].corners
Out[5]:
[(0.10000000149011612, 0.10000000149011612, 0.0),
(50.0, 0.10000000149011612, 0.0),
(0.10000000149011612, 50.0, 0.0),
(10.0, 10.0, 0.0),
(0.10000000149011612, 0.10000000149011612, 50.0),
(50.0, 0.10000000149011612, 50.0),
(0.10000000149011612, 50.0, 50.0),
(10.0, 10.0, 50.0)]This is because the tetrahedron decomposition does not completely solve the problem of concave cells. The following visualization shows the cell in grey, the tetrahedron the point (11.0, 11.0, 0.1) belongs to in blue and the point.

Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels
Type
Projects
Status
No status