Skip to content

Commit a661a80

Browse files
author
Hugo Bowne-Anderson
authored
Edit title cells
1 parent ebae3f1 commit a661a80

3 files changed

+30
-30
lines changed

notebooks/01b-Instructor-Probability_a_simulated_introduction.ipynb

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"# What is probability? A simulated introduction"
7+
"# Joint Probability, Conditional Probability and Bayes' Rule"
88
]
99
},
1010
{
@@ -83,19 +83,19 @@
8383
},
8484
{
8585
"cell_type": "code",
86-
"execution_count": 27,
86+
"execution_count": 2,
8787
"metadata": {},
8888
"outputs": [
8989
{
9090
"name": "stdout",
9191
"output_type": "stream",
9292
"text": [
93-
"0.2506\n"
93+
"0.2456\n"
9494
]
9595
},
9696
{
9797
"data": {
98-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEBCAYAAACXArmGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEwdJREFUeJzt3X+wXHV5x/H3vUmEaBLAcDMEEVqLeaA6EssPZ4ogLdQZ6g/qCFKJ/NABzCCObVFGS1LBaqe/CJZqrAMyYSal0ELVUojTEa3EYlRUsGPMM0wHo0haMpFOEmsgyU3/2HO/rNfcu2f37t1zL75fMwx3n/M9e54995v97J6ze+7QgQMHkCQJYLjpBiRJM4ehIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSMbfpBmo4BDgV2Absb7gXSZot5gBLgW8Cz9RdaTaEwqnAxqabkKRZ6gzgq3UHz4ZQ2Abw9NM/ZXS0tyu6Ll68gB07dve1qX6wr+7YV3fsqzvPt76Gh4c44ogXQfUcWtdsCIX9AKOjB3oOhbH1ZyL76o59dce+uvM87aurw+6eaJYkFYaCJKkwFCRJhaEgSSoMBUlSYShIkopaH0mNiC8DS4C9VendwK8Bq4B5wMcz85PV2HOANcB84K7MXFXVlwO3AouAB4GVmbmvfw9FkjRVHUMhIoaAZcBxY0/iEfES4E7gZFpfn36oCo7HgduA1wE/Au6LiHMzcwOwHrg8MzdFxGeAK4BPTcNjkgbq2b37GRlZOPDt7nlmH7t2/mzg29XzW513ClH9/98iYjFwC7AL+FJm/gQgIu4Gzge+AjyWmY9X9fXABRGxGZifmZuq+1oH3IChoOeBF8ybw5uu+fzAt3vvjeexa+Bb1fNdnVA4AngAeC+tQ0X/DtzFz391ehtwGnD0QerHTFKvbfHiBd0M/wVNvJKrw766M1P7akqn/TFT95d9dWeQfXUMhcz8GvC1sdvVoZ81wEfbhg0Bo7ROXB/ool7bjh27e/6q98jIQrZvn3mvqeyrOzO5r6ZMtj9m8v6yr/p67Wt4eKinF9MdP30UEa+NiLPbSkPAD2hdknXMUcCTwBNd1iVJM0idj6QeDvxVRBwaEQuBS4F3AGdHxEhEvBB4K/AF4OtARMTxETEHuAjYkJlbgT0RcXp1nxcDG/r9YCRJU9MxFDLzX4H7gO8A3wJuy8z/AK4Dvgw8AtyRmd/IzD3AZcA9wGZgC3B3dVcrgJsiYguwALi5vw9FkjRVtb6nkJmrgdXjancAdxxk7APASQepP0rrZLQkaYbyG82SpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklTMrTswIv4aODIzL4uI5cCtwCLgQWBlZu6LiGOB9cASIIEVmbk7Ig4H/h54GbAdeFtm/nefH4skaYpqvVOIiLOBS9tK64GrM3MZMARcUdXXAmsz8wTgYWB1Vf8osDEzTwRuAf6mD71LkvqsYyhExIuBjwF/Vt0+DpifmZuqIeuACyJiHnAmcHd7vfr5DbTeKQD8A3BuNV6SNIPUOXz0aeA64KXV7aOBbW3LtwHHAEcCOzNz37j6z61THWbaCYwAT9ZtdPHiBXWHHtTIyMIprT9d7Ks7M7WvpnTaHzN1f9lXdwbZ16ShEBGXAz/KzAci4rKqPAwcaBs2BIwepE5VHxvTbqhtWS07duxmdHT83dczMrKQ7dt39bTudLKv7szkvpoy2f6YyfvLvurrta/h4aGeXkx3eqdwIbA0Ih4BXgwsoPXEv7RtzFG0XvE/BRwWEXMyc381ZuydwI+rcU9ExFxgIbCj624lSdNq0nMKmfk7mfnKzFwO/AnwL5n5TmBPRJxeDbsY2JCZe4GNtIIE4BJgQ/Xz/dVtquUbq/GSpBmk9kdSx1kB3BIRi4BvAzdX9auA2yNiFfBD4O1VfTWwLiK+B/xvtb4kaYapHQqZuY7WJ4rIzEeB0w4yZitw1kHqPwHe3GOPkqQB8RvNkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUzK0zKCI+ApwPHAA+k5lrIuIcYA0wH7grM1dVY5cDtwKLgAeBlZm5LyKOBdYDS4AEVmTm7n4/IElS7zq+U4iI1wG/DbwKOAV4b0ScBNwGnAecCJwaEedWq6wHrs7MZcAQcEVVXwuszcwTgIeB1f18IJKkqesYCpn5FeC3MnMfrVf5c4HDgccy8/Gqvh64ICKOA+Zn5qZq9XVVfR5wJnB3e72fD0SSNHW1Dh9l5t6IuAF4P/BPwNHAtrYh24BjJqkfCeysAqS9XtvixQu6Gf4LRkYWTmn96WJf3ZmpfTWl0/6YqfvLvrozyL5qhQJAZn44Iv4CuBdYRuv8wpghYJTWO486dap6bTt27GZ0dPxd1DMyspDt23f1tO50sq/uzOS+mjLZ/pjJ+8u+6uu1r+HhoZ5eTNc5p3BCdfKYzPw/4J+Bs4ClbcOOAp4Enpig/hRwWETMqepLq7okaQap85HUlwG3RMQhEfECWieXPw1ERBxfPdFfBGzIzK3Anog4vVr34qq+F9gIXFjVLwE29POBSJKmrs6J5vuB+4DvAN8CHsrMO4HLgHuAzcAWnjuJvAK4KSK2AAuAm6v6VcCVEbEZOANY1b+HIUnqh7onmq8Hrh9XewA46SBjHwVOO0h9K63DTpKkGcpvNEuSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSpq/41mSfpltXDRfA49pJmny2f37h/o9gwFSerg0EPm8qZrPt/Itu+98byBbu+XIhSe3bufkZGFA9/unmf2sWvnzwa+XUnq1S9FKLxg3pxGUv7eG89j18C3Kkm980SzJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSilpXSY2IDwNvq27el5nXRsQ5wBpgPnBXZq6qxi4HbgUWAQ8CKzNzX0QcC6wHlgAJrMjM3X19NJKkKen4TqF68n898GpgOXByRLwduA04DzgRODUizq1WWQ9cnZnLgCHgiqq+FlibmScADwOr+/lAJElTV+fw0Tbgmsx8NjP3At8HlgGPZebjmbmPVhBcEBHHAfMzc1O17rqqPg84E7i7vd6/hyFJ6oeOh48y83tjP0fEy2kdRvpbWmExZhtwDHD0BPUjgZ1VgLTXa1u8eEE3w2eMTn/xrYm/CFeHfc0Ozq/+sq8u/vJaRLwCuA/4ALCP1ruFMUPAKK13Hgdq1Knqte3YsZvR0fF3UU+Tv+jt2yf+22sjIwsnXd4U++qO86s7s7GvpsOil/01PDzU04vpWp8+iojTgQeAD2bm7cATwNK2IUcBT05Sfwo4LCLmVPWlVV2SNIPUOdH8UuBzwEWZeWdV/nprURxfPdFfBGzIzK3AnipEAC6u6nuBjcCFVf0SYEMfH4ckqQ/qHD56P3AosCYixmp/B1wG3FMtu5/nTiKvAG6JiEXAt4Gbq/pVwO0RsQr4IfD2PvQvSeqjOiea3we8b4LFJx1k/KPAaQepbwXO6rI/SdIA+Y1mSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkq5tYdGBGLgIeAN2bmDyLiHGANMB+4KzNXVeOWA7cCi4AHgZWZuS8ijgXWA0uABFZk5u6+PhpJ0pTUeqcQEa8Bvgosq27PB24DzgNOBE6NiHOr4euBqzNzGTAEXFHV1wJrM/ME4GFgdb8ehCSpP+oeProCeA/wZHX7NOCxzHw8M/fRCoILIuI4YH5mbqrGravq84Azgbvb61NvX5LUT7UOH2Xm5QARMVY6GtjWNmQbcMwk9SOBnVWAtNdrW7x4QTfDZ4yRkYVTWt4U+5odnF/9ZV9dnFMYZxg40HZ7CBjtok5Vr23Hjt2Mjo6/i3qa/EVv375rwmUjIwsnXd4U++qO86s7s7GvpsOil/01PDzU04vpXj999ASwtO32UbQOLU1Ufwo4LCLmVPWlPHcoSpI0Q/QaCl8HIiKOr57oLwI2ZOZWYE9EnF6Nu7iq7wU2AhdW9UuADVPoW5I0DXoKhczcA1wG3ANsBrbw3EnkFcBNEbEFWADcXNWvAq6MiM3AGcCq3tuWJE2Hrs4pZOavtP38AHDSQcY8SuvTSePrW4Gzuu5QkjQwfqNZklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJKKuYPcWERcBKwC5gEfz8xPDnL7kqTJDeydQkS8BPgY8FpgOXBlRPz6oLYvSepskO8UzgG+lJk/AYiIu4HzgY90WG8OwPDw0JQ2vuSI+VNav1ed+p7q45ou9tUd51d3ZmNfTf2Oobf91bbOnG7WGzpw4EDXG+tFRHwIeFFmrqpuXw6clplXdlj1tcDG6e5Pkp6nzgC+WnfwIN8pDAPtCTQEjNZY75u0HtQ2YP809CVJz0dzgKW0nkNrG2QoPEHryX3MUcCTNdZ7hi5STpJU/Fe3KwwyFL4IXB8RI8BPgbcCnQ4dSZIGaGCfPsrMHwPXAV8GHgHuyMxvDGr7kqTOBnaiWZI08/mNZklSYShIkgpDQZJUGAqSpGKgF8Trt04X2IuI5cCtwCLgQWBlZu6LiGOB9cASIIEVmbl7gH2dB9xA6wt8jwPvzMynI+JS4M+B/6mG3peZ1w2wrw8D7wKerkq3ZOYnJ9qPg+ir2va6tuEjwNOZ+crp3l/V9hcBDwFvzMwfjFvWyPyq0Vcj86tGX43Mr8n6anJ+VfvjbW33fe245Y3Mr1n7TqHmBfbWA1dn5jJa/0CuqOprgbWZeQLwMLB6UH1Vk/NTwBsy8yTgu8D11eJTgD/KzOXVf/2cgHX21ynA77dtf+zJeaL9OO19ZeYjY/0Av0nrCWVlW7/Tsr+q3l5D64uTyyYYMvD51amvpuZXp77atj/Q+dWpr6bmV0ScA7weeDWteX9yRLxl3LBG5tesDQXaLrCXmT8Fxi6wB0BEHAfMz8xNVWkdcEFEzAPOrMaX+qD6ovVq+D3V9zag9Y/22OrnU4FLI+I/I2J9RBwxwL6g9Y/gjyPiuxHxiYg4dKL9OOC+xnwI+Epmjn3DfTr3F7T+Eb6Hg3zzvsH5NWlfNDe/OvUFzcyvOn2NGeT82gZck5nPZuZe4Ps893tqdH7N5lA4mtaOHbMNOKbG8iOBnW1vT8evN619ZeaOzPwsQETMBz4IfK5t7J8CrwJ+BHxiUH1FxALgO8AHgN8ADqf1CqTTfp7Wvtr6O4zWN+BvGDd2uvYXmXl5Zk50Mcam5tekfTU4vybtq8H51en3ONbfQOdXZn5v7Ak/Il5O6zDS/W1DGptfs/mcQqcL7E20fHwd6l2Yr199AWUSfhZ4NDNvB8jMt7Qt/0t6uG5Jr31VxyR/t237NwK30ZqovVzIsC99tXkH8LnMfKqt5+ncX500Nb9qaWB+TarB+VVXI/MrIl4B3Ad8IDMfa1vU2Pyaze8UnqB1BcAx4y+wN9Hyp4DDImLsGuNLqXdhvn71RUQspXU58O8Cl1e1wyLiD9uGDQH9PNk2aV8RcWxEvGvc9vd2Wm+6+2rze8CdYzcGsL86aWp+ddTQ/OrUU1Pzq66Bz6+IOB14APjgWHC3aWx+zeZQ+CJwdkSMRMQLaV1g7wtjCzNzK7Cn2vEAFwMbquN3G4ELq/olwIZB9VX9Mu8F/jEz/yAzx1J/N3BtdVIM4Gpar/QG0hfwM+AvI+JXI2KI1jHYz060HwfYF1U/JwNfaytP9/6aVIPza1INzq9OmppfHTUxvyLipbQO612UmXeOX97k/Jq1oTDRBfYi4v6IOKUatgK4KSK2AAuAm6v6VbQ+5bKZ1uW8Vw2wrzfTOqZ6fkQ8Uv13a2bup3Vc8VMR8X1ak/TaCTbT974yczvwblpPKEnrldGN1eoT7cdp76saNgI8m5l72tab1v01kabnV42+Gplfnfpqan516qu62cT8ej9wKLCm7fe0cibMLy+IJ0kqZu07BUlS/xkKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkor/BypjhHI2o0oKAAAAAElFTkSuQmCC\n",
98+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEBCAYAAACXArmGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEv9JREFUeJzt3X2QXXV9x/H3bhIhmgcwLEMQQ2sxX6iOxPLgTBGkhTpDfaCOIJXIgw5gBuloizJakgpWO30iWKqxDsjEmZRCC1VLIU5HdCQWUVHBjpjvMB2MxqQlE+kksQaSbPrHPfvjumb3nnv37j279P2aYdj7Pb+z53vP/nI/95yz9+zQwYMHkSQJYLjpBiRJM4ehIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSMbfpBmo4DDgN2A4caLgXSZot5gBLgW8Bz9RdaTaEwmnApqabkKRZ6kzga3UHz4ZQ2A7w9NM/Y3S0tzu6LlmygJ079/S1qX6wr+7YV3fsqzvPt76Gh4c48sgXQfUaWtdsCIUDAKOjB3sOhbH1ZyL76o59dce+uvM87aur0+5eaJYkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJU1PqcQkR8BTga2FeV3g38GrAamAd8PDM/WY09F1gLzAfuyszVVX0FcBuwCHgQWJWZ+/v3VKRmPLvvACMjCwe+3b3P7Gf3rp8PfLt6fusYChExBCwHjh97EY+IlwB3AqfQuqfGQ1VwPAncDrwO+DFwX0Scl5kbgQ3AFZn5cER8BrgS+NQ0PCdpoF4wbw5vuvYLA9/uvTedz+6Bb1XPd3WOFKL6/79FxBLgVmA38OXM/ClARNwNXAB8FXgiM5+s6huACyPicWB+Zj5cfa/1wI0YCpI0o9S5pnAk8ADwFuAcYBWwjF+8n8Z24Djg2C7rkqQZpOORQmZ+Hfj62OPq1M9a4KNtw4aAUVohc7CLem1LlizoZvgvaeKcbx321Z2Z2ldTOu2Pmbq/7Ks7g+yrzjWF1wKHZeYDVWkI+CGt+3SPOQbYBmztsl7bzp17er4p1MjIQnbsmHlnX+2rOzO5r6ZMtj9m8v6yr/p67Wt4eKinN9N1Th8dAfxVRBweEQuBy4B3AOdExEhEvBB4K/BF4BtARMQJETEHuBjYmJlbgL0RcUb1PS8BNnbdrSRpWnUMhcz8V+A+4LvAt4HbM/PfgeuBrwCPAndk5jczcy9wOXAP8DiwGbi7+lYrgZsjYjOwALilv09FkjRVtT6nkJlrgDXjancAdxxi7APAyYeoPwac3lubkqRB8BPNkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUzK07MCL+GjgqMy+PiBXAbcAi4EFgVWbuj4hlwAbgaCCBlZm5JyKOAP4eeBmwA3hbZv5Xn5+LJGmKah0pRMQ5wGVtpQ3ANZm5HBgCrqzq64B1mXki8Aiwpqp/FNiUmScBtwJ/04feJUl91jEUIuLFwMeAP6seHw/Mz8yHqyHrgQsjYh5wFnB3e736+g20jhQA/gE4rxovSZpB6hwpfBq4Hni6enwssL1t+XbgOOAoYFdm7h9X/4V1quW7gJEpdS5J6rtJrylExBXAjzPzgYi4vCoPAwfbhg0Bo4eoU9XHxrQbaltWy5IlC7oZ/ktGRhZOaf3pYl/dmal9NaXT/pip+8u+ujPIvjpdaL4IWBoRjwIvBhbQeuFf2jbmGGAb8BSwOCLmZOaBasy2asxPqnFbI2IusBDY2U2jO3fuYXR0fObUMzKykB07dve07nSyr+7M5L6aMtn+mMn7y77q67Wv4eGhnt5MT3r6KDN/JzNfmZkrgD8B/iUz3wnsjYgzqmGXABszcx+wiVaQAFwKbKy+vr96TLV8UzVekjSD1P6V1HFWArdGxCLgO8AtVf1q4LMRsRr4EfD2qr4GWB8R3wf+p1pfkjTD1A6FzFxP6zeKyMzHgNMPMWYLcPYh6j8F3txjj5KkAfETzZKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVMytMygiPgJcABwEPpOZayPiXGAtMB+4KzNXV2NXALcBi4AHgVWZuT8ilgEbgKOBBFZm5p5+PyFJUu86HilExOuA3wZeBZwK/EFEnAzcDpwPnAScFhHnVatsAK7JzOXAEHBlVV8HrMvME4FHgDX9fCKSpKnrGAqZ+VXgtzJzP613+XOBI4AnMvPJqr4BuDAijgfmZ+bD1errq/o84Czg7vZ6P5+IJGnqap0+ysx9EXEj8H7gn4Bjge1tQ7YDx01SPwrYVQVIe722JUsWdDP8l4yMLJzS+tPFvrozU/tqSqf9MVP3l311Z5B91QoFgMz8cET8BXAvsJzW9YUxQ8AorSOPOnWqem07d+5hdHT8t6hnZGQhO3bs7mnd6WRf3ZnJfTVlsv0xk/eXfdXXa1/Dw0M9vZmuc03hxOriMZn5v8A/A2cDS9uGHQNsA7ZOUH8KWBwRc6r60qouSZpB6vxK6suAWyPisIh4Aa2Ly58GIiJOqF7oLwY2ZuYWYG9EnFGte0lV3wdsAi6q6pcCG/v5RCRJU1fnQvP9wH3Ad4FvAw9l5p3A5cA9wOPAZp67iLwSuDkiNgMLgFuq+tXAVRHxOHAmsLp/T0OS1A91LzTfANwwrvYAcPIhxj4GnH6I+hZap50kSTOUn2iWJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpKLWH9mZ7Z7dd6CRP66+95n97N7184FvV1J/LVw0n8MPa+bl8tl9Bwa6vf8XofCCeXN407VfGPh2773pfHYPfKuS+u3ww+Y28hoCrdeRQfL0kSSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkopad0mNiA8Db6se3peZ10XEucBaYD5wV2aursauAG4DFgEPAqsyc39ELAM2AEcDCazMzD19fTaSpCnpeKRQvfi/Hng1sAI4JSLeDtwOnA+cBJwWEedVq2wArsnM5cAQcGVVXwesy8wTgUeANf18IpKkqatz+mg7cG1mPpuZ+4AfAMuBJzLzyczcTysILoyI44H5mflwte76qj4POAu4u73ev6chSeqHjqePMvP7Y19HxMtpnUb6W1phMWY7cBxw7AT1o4BdVYC01yVJM0jtv7wWEa8A7gM+AOyndbQwZggYpXXkcbBGnape25IlC7oZPmN0+jOgTfyZ0Drsa3ZwfvWXfdW/0HwGcA/wvsy8MyJeByxtG3IMsA3YOkH9KWBxRMzJzAPVmG3dNLpz5x5GR8fnSj1N/qB37Jj4D3KOjCycdHlT7Ks7zq/uzMa+mg6LXvbX8PBQT2+m61xofinweeDizLyzKn+jtShOiIg5wMXAxszcAuytQgTgkqq+D9gEXFTVLwU2dt2tJGla1TlSeD9wOLA2IsZqfwdcTuvo4XDgfp67iLwSuDUiFgHfAW6p6lcDn42I1cCPgLf3oX9JUh/VudD8XuC9Eyw++RDjHwNOP0R9C3B2l/1JkgbITzRLkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVIxt+7AiFgEPAS8MTN/GBHnAmuB+cBdmbm6GrcCuA1YBDwIrMrM/RGxDNgAHA0ksDIz9/T12UiSpqTWkUJEvAb4GrC8ejwfuB04HzgJOC0izquGbwCuyczlwBBwZVVfB6zLzBOBR4A1/XoSkqT+qHv66ErgPcC26vHpwBOZ+WRm7qcVBBdGxPHA/Mx8uBq3vqrPA84C7m6vT719SVI/1Tp9lJlXAETEWOlYYHvbkO3AcZPUjwJ2VQHSXpckzSC1rymMMwwcbHs8BIx2Uaeq17ZkyYLuu5wBRkYWTml5U+xrdnB+9Zd99R4KW4GlbY+PoXVqaaL6U8DiiJiTmQeqMdvows6dexgdHZ8r9TT5g96xY/eEy0ZGFk66vCn21R3nV3dmY19Nh0Uv+2t4eKinN9O9/krqN4CIiBMiYg5wMbAxM7cAeyPijGrcJVV9H7AJuKiqXwps7HHbkqRp0lMoZOZe4HLgHuBxYDPPXUReCdwcEZuBBcAtVf1q4KqIeBw4E1jde9uSpOnQ1emjzPyVtq8fAE4+xJjHaP120vj6FuDsrjuUJA2Mn2iWJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqRi7iA3FhEXA6uBecDHM/OTg9y+JGlyAztSiIiXAB8DXgusAK6KiF8f1PYlSZ0N8kjhXODLmflTgIi4G7gA+EiH9eYADA8PTWnjRx85f0rr96pT31N9XtPFvrrj/OrObOyrqZ8x9La/2taZ0816QwcPHux6Y72IiA8BL8rM1dXjK4DTM/OqDqu+Ftg03f1J0vPUmcDX6g4e5JHCMNCeQEPAaI31vkXrSW0HDkxDX5L0fDQHWErrNbS2QYbCVlov7mOOAbbVWO8Zukg5SVLxn92uMMhQ+BJwQ0SMAD8D3gp0OnUkSRqggf32UWb+BLge+ArwKHBHZn5zUNuXJHU2sAvNkqSZz080S5IKQ0GSVBgKkqTCUJAkFQO9IV6/dbrBXkSsAG4DFgEPAqsyc39ELAM2AEcDCazMzD0D7Ot84EZaH+B7EnhnZj4dEZcBfw78dzX0vsy8foB9fRh4F/B0Vbo1Mz850X4cRF/Vtte3DR8Bns7MV073/qq2vwh4CHhjZv5w3LJG5leNvhqZXzX6amR+TdZXk/Or2h9va/ve141b3sj8mrVHCjVvsLcBuCYzl9P6B3JlVV8HrMvME4FHgDWD6quanJ8C3pCZJwPfA26oFp8K/FFmrqj+6+cErLO/TgV+v237Yy/OE+3Hae8rMx8d6wf4TVovKKva+p2W/VX19hpaH5xcPsGQgc+vTn01Nb869dW2/YHOr059NTW/IuJc4PXAq2nN+1Mi4i3jhjUyv2ZtKNB2g73M/BkwdoM9ACLieGB+Zj5cldYDF0bEPOCsanypD6ovWu+G31N9bgNa/2iXVV+fBlwWEf8RERsi4sgB9gWtfwR/HBHfi4hPRMThE+3HAfc15kPAVzNz7BPu07m/oPWP8D0c4pP3Dc6vSfuiufnVqS9oZn7V6WvMIOfXduDazHw2M/cBP+C5n1Oj82s2h8KxtHbsmO3AcTWWHwXsajs8Hb/etPaVmTsz83MAETEf+CDw+baxfwq8Cvgx8IlB9RURC4DvAh8AfgM4gtY7kE77eVr7autvMa1PwN84bux07S8y84rMnOhmjE3Nr0n7anB+TdpXg/Or089xrL+Bzq/M/P7YC35EvJzWaaT724Y0Nr9m8zWFTjfYm2j5+DrUuzFfv/oCyiT8HPBYZn4WIDPf0rb8L+nhviW99lWdk/zdtu3fBNxOa6L2ciPDvvTV5h3A5zPzqbaep3N/ddLU/Kqlgfk1qQbnV12NzK+IeAVwH/CBzHyibVFj82s2HylspXUHwDHjb7A30fKngMURMXaP8aXUuzFfv/oiIpbSuh3494ArqtriiPjDtmFDQD8vtk3aV0Qsi4h3jdv+vk7rTXdfbX4PuHPswQD2VydNza+OGppfnXpqan7VNfD5FRFnAA8AHxwL7jaNza/ZHApfAs6JiJGIeCGtG+x9cWxhZm4B9lY7HuASYGN1/m4TcFFVvxTYOKi+qh/mvcA/Zub7MnMs9fcA11UXxQCuofVObyB9AT8H/jIifjUihmidg/3cRPtxgH1R9XMK8PW28nTvr0k1OL8m1eD86qSp+dVRE/MrIl5K67TexZl55/jlTc6vWRsKE91gLyLuj4hTq2ErgZsjYjOwALilql9N67dcHqd1O+/VA+zrzbTOqV4QEY9W/92WmQdonVf8VET8gNYkvW6CzfS9r8zcAbyb1gtK0npndFO1+kT7cdr7qoaNAM9m5t629aZ1f02k6flVo69G5lenvpqaX536qh42Mb/eDxwOrG37Oa2aCfPLG+JJkopZe6QgSeo/Q0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlS8X/Ba4xyC34TQAAAAABJRU5ErkJggg==\n",
9999
"text/plain": [
100100
"<Figure size 432x288 with 1 Axes>"
101101
]
@@ -116,16 +116,16 @@
116116
},
117117
{
118118
"cell_type": "code",
119-
"execution_count": 28,
119+
"execution_count": 3,
120120
"metadata": {},
121121
"outputs": [
122122
{
123123
"data": {
124124
"text/plain": [
125-
"0.25254837999999996"
125+
"0.2523537"
126126
]
127127
},
128-
"execution_count": 28,
128+
"execution_count": 3,
129129
"metadata": {},
130130
"output_type": "execute_result"
131131
}
@@ -165,7 +165,7 @@
165165
},
166166
{
167167
"cell_type": "code",
168-
"execution_count": 2,
168+
"execution_count": 4,
169169
"metadata": {},
170170
"outputs": [
171171
{
@@ -174,7 +174,7 @@
174174
"0.724891534007516"
175175
]
176176
},
177-
"execution_count": 2,
177+
"execution_count": 4,
178178
"metadata": {},
179179
"output_type": "execute_result"
180180
}
@@ -199,16 +199,16 @@
199199
},
200200
{
201201
"cell_type": "code",
202-
"execution_count": 3,
202+
"execution_count": 5,
203203
"metadata": {},
204204
"outputs": [
205205
{
206206
"data": {
207207
"text/plain": [
208-
"0.724090328"
208+
"0.7239874466"
209209
]
210210
},
211-
"execution_count": 3,
211+
"execution_count": 5,
212212
"metadata": {},
213213
"output_type": "execute_result"
214214
}
@@ -230,16 +230,16 @@
230230
},
231231
{
232232
"cell_type": "code",
233-
"execution_count": 4,
233+
"execution_count": 6,
234234
"metadata": {},
235235
"outputs": [
236236
{
237237
"data": {
238238
"text/plain": [
239-
"0.72635"
239+
"0.7242"
240240
]
241241
},
242-
"execution_count": 4,
242+
"execution_count": 6,
243243
"metadata": {},
244244
"output_type": "execute_result"
245245
}
@@ -292,7 +292,7 @@
292292
},
293293
{
294294
"cell_type": "code",
295-
"execution_count": 5,
295+
"execution_count": 7,
296296
"metadata": {},
297297
"outputs": [
298298
{
@@ -301,7 +301,7 @@
301301
"0.8514056224899599"
302302
]
303303
},
304-
"execution_count": 5,
304+
"execution_count": 7,
305305
"metadata": {},
306306
"output_type": "execute_result"
307307
}
@@ -312,7 +312,7 @@
312312
},
313313
{
314314
"cell_type": "code",
315-
"execution_count": 33,
315+
"execution_count": 8,
316316
"metadata": {},
317317
"outputs": [
318318
{
@@ -321,7 +321,7 @@
321321
"0.6942148760330579"
322322
]
323323
},
324-
"execution_count": 33,
324+
"execution_count": 8,
325325
"metadata": {},
326326
"output_type": "execute_result"
327327
}
@@ -333,7 +333,7 @@
333333
},
334334
{
335335
"cell_type": "code",
336-
"execution_count": 34,
336+
"execution_count": 9,
337337
"metadata": {},
338338
"outputs": [
339339
{
@@ -342,7 +342,7 @@
342342
"1.0"
343343
]
344344
},
345-
"execution_count": 34,
345+
"execution_count": 9,
346346
"metadata": {},
347347
"output_type": "execute_result"
348348
}
@@ -410,7 +410,7 @@
410410
},
411411
{
412412
"cell_type": "code",
413-
"execution_count": 35,
413+
"execution_count": 10,
414414
"metadata": {},
415415
"outputs": [],
416416
"source": [
@@ -423,7 +423,7 @@
423423
},
424424
{
425425
"cell_type": "code",
426-
"execution_count": 36,
426+
"execution_count": 11,
427427
"metadata": {},
428428
"outputs": [],
429429
"source": [
@@ -435,16 +435,16 @@
435435
},
436436
{
437437
"cell_type": "code",
438-
"execution_count": 37,
438+
"execution_count": 12,
439439
"metadata": {},
440440
"outputs": [
441441
{
442442
"data": {
443443
"text/plain": [
444-
"array([0.3442953])"
444+
"array([0.33718559])"
445445
]
446446
},
447-
"execution_count": 37,
447+
"execution_count": 12,
448448
"metadata": {},
449449
"output_type": "execute_result"
450450
}

notebooks/02a-Instructor-Parameter_estimation_hypothesis_testing.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"# Parameter estimation and hypothesis testing"
7+
"# Bayesian Inference and Parameter Estimation"
88
]
99
},
1010
{
@@ -42,7 +42,7 @@
4242
"cell_type": "markdown",
4343
"metadata": {},
4444
"source": [
45-
"## 1. From Bayes Theorem to Bayesian Inference"
45+
"## 1. From Bayes' Theorem to Bayesian Inference"
4646
]
4747
},
4848
{

notebooks/02b-Instructor-Parameter_estimation_hypothesis_testing.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"# Parameter estimation and hypothesis testing"
7+
"# Probabilistic Programming, Parameter estimation and hypothesis testing"
88
]
99
},
1010
{
@@ -29,7 +29,7 @@
2929
"cell_type": "markdown",
3030
"metadata": {},
3131
"source": [
32-
"## Learning Objectives of Part 2"
32+
"## Learning Objectives of Part 2-b"
3333
]
3434
},
3535
{

0 commit comments

Comments
 (0)