Skip to content

Commit b0292b9

Browse files
committed
ref
1 parent eb9034e commit b0292b9

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

codes/classical/bits/reed_muller/dual_hamming/repetition.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ features:
2929

3030
threshold:
3131
- 'Suppose each bit has probability \(p\) of being received correctly, independent for each bit. The probability that a repetition code is received correctly is \(\sum_{k=0}^{(n-1)/2}\frac{n!}{k!(n-k)!}p^{n-k}(1-p)^{k}\). If \(\frac{1}{2}\leq p\), then one can always increase the probability of success by increasing the number of physical bits \(n\); see section 2.2.1 Ref. \cite{arxiv:2111.08894} for a pedagogical explanation.'
32-
- 'The first threshold theorem for classical circuits was proven by von Neumann \cite{doi:10.1515/9781400882618-003} using cellular automata \cite{manual:{Von Neumann, John, and Arthur Walter Burks. "Theory of self-reproducing automata." (1966).}} and which spurred the study of noisy classical circuits \cite{doi:10.1109/SFCS.1985.41,doi:10.1109/18.2628,doi:10.1214/aop/1022855749,doi:10.1214/aoms/1177699266}.'
32+
- 'The first threshold theorem for classical circuits was proven by von Neumann \cite{doi:10.1515/9781400882618-003} using cellular automata \cite{manual:{Von Neumann, John, and Arthur Walter Burks. "Theory of self-reproducing automata." (1966).},manual:{Von Neumann, John. "Probabilistic logics and the synthesis of reliable organisms from unreliable components." Automata studies 34.34 (1956): 43-98.}} and which spurred the study of noisy classical circuits \cite{doi:10.1109/SFCS.1985.41,doi:10.1109/18.2628,doi:10.1214/aop/1022855749,doi:10.1214/aoms/1177699266}.'
3333

3434
fault_tolerance:
3535
- 'Triple modular redundancy (TMR) error-correction protocol \cite{doi:10.1147/rd.62.0200} for fault-tolerant memory operations and classical gate operations; see section 2.6 and 2.7 Ref. \cite{arxiv:2111.08894} for a pedagogical explanation.'

0 commit comments

Comments
 (0)