Skip to content

Commit c2a4bea

Browse files
committed
graph edits
1 parent 9509210 commit c2a4bea

File tree

12 files changed

+24
-12
lines changed

12 files changed

+24
-12
lines changed

codes/classical/groups/permutation/binary_permutation.yml

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ code_id: binary_permutation
77
physical: groups
88

99
name: 'Code in permutations'
10-
introduced: '\cite{doi:10.1109/PROC.1965.3680,doi:10.1109/TIT.1969.1054291,doi:10.1016/S0019-9958(79)90076-7}'
10+
introduced: '\cite{doi:10.1109/PROC.1965.3680,doi:10.1109/TIT.1969.1054291,doi:10.1016/0378-3758(78)90008-3,doi:10.1016/0097-3165(77)90009-7,doi:10.1016/S0019-9958(79)90076-7}'
1111

1212
alternative_names:
1313
- 'Permutation-based code'
@@ -20,21 +20,26 @@ description: |
2020
protection: |
2121
Protects against errors in the Kendall tau distance on the space of permutations.
2222
The Kendall distance between permutations \(\sigma\) and \(\pi\) is defined as the minimum number of adjacent transpositions required to change \(\sigma\) into \(\pi\).
23-
Various bounds have been developed \cite{doi:10.1016/0097-3165(79)90012-8,arxiv:0908.4094}, including LP bounds \cite{doi:10.1006/eujc.1998.0272}.
23+
Various bounds have been developed \cite{doi:10.1016/0097-3165(79)90012-8,arxiv:0908.4094}, including LP bounds \cite{doi:10.1006/eujc.1998.0272,arxiv:1912.04500}.
2424
The mapping to inversion vectors is not distance preserving, but the \(\ell_1\) distance between inversion vectors is a lower bound on the Kendall tau distance \cite{arxiv:0908.4094}.
2525
2626
Other distances include the Ulam distance \cite{doi:10.1515/dma.1992.2.3.241}.
2727
28+
Linear programming bounds for permutation codes have been derived \cite{arxiv:1912.04500}.
29+
2830
notes:
2931
- 'Review of parallels between linear binary codes and permutation groups \cite{doi:10.1016/j.ejc.2009.03.044}.'
3032

3133
features:
3234
rate: 'Asymptotically good codes in the Ulam metric exist \cite{arxiv:2401.17235}.'
3335

36+
3437
relations:
3538
parents:
3639
- code_id: group_classical
3740
detail: 'Codes in permutations are group-alphabet codes for the symmetric group \(G=S_n\).'
41+
- code_id: symmetric_space
42+
detail: 'The permutation group can be viewed as a finite symmetric space \(G/H\) with \(G = S_n \times S_n\) and \(H=S_n\) \cite{doi:10.1006/eujc.1998.0272,arxiv:1912.04500}\cite[Table 3]{arxiv:1007.2905}.'
3843
cousins:
3944
- code_id: convolutional
4045
detail: 'Convolutional codes in permutations have been constructed \cite{doi:10.1109/TCOMM.2005.858683}.'

codes/classical/groups/unitary/unitary.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ code_id: unitary
77
physical: groups
88

99
name: 'Unitary code'
10-
introduced: '\cite{arxiv:0806.2317,arxiv:0809.3813}'
10+
introduced: '\cite{arxiv:0809.3813}'
1111

1212
description: |
1313
Encodes \(K\) states (codewords) into the unitary group \(U(N)\).

codes/classical/groups/unitary/unitary_design.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ description: |
1414
The design conditions are defined using the \(t\)th tensor product of the group's adjoint representation.
1515
1616
protection: |
17-
Bounds on design size have been computed \cite{arxiv:0806.2317}.
17+
Bounds on design size have been computed \cite{arXiv:0809.3813}.
1818
1919
2020
relations:

codes/classical/homogeneous/homogeneous_space_classical.yml

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,9 @@ protection: |
2323
Functions on \(G/H\) that transform as an irrep of \(G\) are called \(G\)\textit{-harmonics}.
2424
2525
If the decomposition of a homogeneous space into \(G\)-irreps is \textit{multiplicity free}, there are no multiplicities, and the irreps and their internal indices are sufficient to completely label a basis for the space.
26-
For example, the integer angular momentum \(J\) and its \(z\)-axis projection \(m\) are sufficient to completely label the spherical harmonics (a.k.a. be a good set of quantum numbers), which in turn can be used to expand any function on the two-sphere \(S^2\).
26+
In this case, the pair \((G,H)\) is called a Gelfand pair.
27+
For example, the integer angular momentum \(J\) and its \(z\)-axis projection \(m\) are sufficient to completely label the spherical harmonics (a.k.a. be a good set of quantum numbers), which in turn can be used to expand any function on the two-sphere \(S^2 = SO(3)/SO(2)\).
28+
Therefore, \((SO(3),SO(2))\) is a Gelfand pair.
2729
2830
Functions that correspond to projections onto irreps are called \textit{zonal spherical functions} \cite{doi:10.2307/1969252}; these correspond to functions on the double coset space \(H \backslash G / H\) \cite[Eq. (2.9)]{arxiv:math/0701533} and can be obtained by averaging harmonics over \(G\).
2931

codes/classical/homogeneous/symmetric/grassmann/grassmannian.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,8 +7,8 @@ code_id: grassmannian
77
physical: quotients
88

99
name: 'Grassmannian code'
10-
introduced: '\cite{arxiv:math/0208002,arxiv:math/0208003,arxiv:math/0208004}'
11-
10+
introduced: '\cite{arxiv:math/0208002,arxiv:math/0208003,arxiv:math/0208004,arxiv:0806.2317}'
11+
# Last ref for complex cases
1212

1313
description: |
1414
Encodes \(K\) states (codewords) into a compact Grassmannian, which includes the real, complex, or quaternionic Grassmannians.

codes/classical/matrices/rank-metric/gabidulin.yml renamed to codes/classical/matrices/sum-rank-metric/rank-metric/gabidulin.yml

File renamed without changes.
File renamed without changes.

codes/classical/matrices/rank-metric/maximum_rank_distance.yml renamed to codes/classical/matrices/sum-rank-metric/rank-metric/maximum_rank_distance.yml

File renamed without changes.

codes/classical/matrices/rank-metric/rank_metric.yml renamed to codes/classical/matrices/sum-rank-metric/rank-metric/rank_metric.yml

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -47,10 +47,15 @@ notes:
4747
- 'See Ref. \cite{arxiv:1410.1333} for a discussion of MacWilliams identities and the relationship between rank metric and Gabidulin codes.'
4848
- 'See Ref. \cite{doi:10.1017/9781009283403}\cite[Sec. 5]{preset:HPArray} for more details.'
4949

50+
5051
relations:
5152
parents:
5253
- code_id: sum_rank_metric
5354
detail: 'The sum-rank metric generalizes both the Hamming metric and the rank metric \cite{arxiv:1710.03109}.'
55+
cousins:
56+
- code_id: subspace
57+
detail: 'An \(m \times n\) rank-metric codeword \(A\) can be \textit{lifted} to a subspace codeword \((I | A)\) that generates an \(m\)-dimensional subspace \cite{arxiv:0711.0708}\cite[Def. 14.5.21]{doi:HKSprojective}.'
58+
5459

5560

5661
# Begin Entry Meta Information

codes/classical/q-ary_digits/ag/varieties/grassmannian_variety.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ physical: q-ary_digits
88
logical: q-ary_digits
99

1010
name: 'Grassmannian evaluation code'
11-
introduced: '\cite{manual:{C. T. Ryan, An application of Grassmannian varieties to coding theory. Congr. Numer. 57 (1987) 257–271.},manual:{C.T. Ryan, Projective codes based on Grassmann varieties, Congr. Numer. 57, 273–279 (1987).},doi:10.1016/0166-218X(90)90112-P}'
11+
introduced: '\cite{manual:{C. T. Ryan, An application of Grassmannian varieties to coding theory. Congr. Numer. 57 (1987) 257–271.},manual:{C.T. Ryan, Projective codes based on Grassmann varieties, Congr. Numer. 57, 273–279 (1987).},doi:10.1016/0166-218X(90)90112-P,manual:{Nogin, D. Yu. "Codes associated to Grassmannians." Arithmetic, geometry and coding theory (Luminy, 1993) (2011): 145-154.}}'
1212

1313
description: |
1414
Evaluation code of polynomials evaluated on points lying on a finite-field Grassmannian embedded into projective space using the Plucker embedding \cite{doi:10.1515/9783110811056.145,doi:10.1007/978-1-4939-3082-1}.

0 commit comments

Comments
 (0)