Skip to content

Commit d8424a4

Browse files
committed
graph edits
1 parent db18fc0 commit d8424a4

File tree

4 files changed

+9
-5
lines changed

4 files changed

+9
-5
lines changed

codes/classical/analog/sphere_packing/lattice/root/eeight.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -39,14 +39,14 @@ notes:
3939

4040
relations:
4141
parents:
42+
- code_id: self_dual_lattice
43+
detail: 'The \(E_8\) Gosset lattice is even and unimodular.'
4244
- code_id: root
4345
- code_id: barnes_wall
4446
- code_id: construction_a
4547
detail: 'The \([8,4,4]\) extended Hamming code yields the \(E_8\) Gosset lattice via \term{Construction A} \cite[Exam. 10.5.2]{preset:EricZin}.'
4648
- code_id: construction_a4
4749
detail: 'The octacode yields the \(E_8\) Gosset lattice via \term{Construction \(A_4\)} \cite{doi:10.1007/3-540-57843-9_20,doi:10.1109/18.370138}\cite[Exam. 12.5.13]{doi:10.1017/CBO9780511807077}.'
48-
- code_id: self_dual_lattice
49-
detail: 'The \(E_8\) Gosset lattice is even and unimodular.'
5050
- code_id: univ_opt_analog
5151
detail: 'The \(E_8\) Gosset lattice is universally optimal \cite{arxiv:1902.05438}.'
5252
cousins:

codes/classical/homogeneous/symmetric/symmetric_space.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ name: 'Symmetric-space code'
1212
description: |
1313
Encodes \(K\) states (codewords) into a symmetric space, which is a homogeneous space \(G/H\) with an additional property whose definition depends on whether the homogeneous space is continuous or Finite.
1414
15-
Continuous symmetric spaces are homogeneous spaces with an appropriately defined inversion operation. The two-sphere is a symmetric space, and its operation is inversion through the origin. This holds true in higher dimensions, yielding the \(D\)-dimensional spherical symmetric space family \(SO(D+1)/SO(D)\).
15+
Infinite symmetric spaces are homogeneous spaces with an appropriately defined inversion operation. The two-sphere is a symmetric space, and its operation is inversion through the origin. This holds true in higher dimensions, yielding the \(D\)-dimensional spherical symmetric space family \(SO(D+1)/SO(D)\).
1616
Cartan classified the compact symmetric spaces whose \(G\) are simple real Lie groups \cite{doi:10.24033/asens.781,doi:10.1007/978-3-642-18245-7}.
1717
These spaces include spheres, projective spaces, and Grassmannians.
1818
Noncompact symmetric spaces include Euclidean and hyperbolic spaces.
@@ -32,7 +32,7 @@ notes:
3232
relations:
3333
parents:
3434
- code_id: homogeneous_space_classical
35-
detail: 'Continuous symmetric spaces are homogeneous spaces with an appropriately defined inversion operation. Finite symmetric spaces are defined in coding theory as spaces admitting a generously transitive group action \cite[Def. 4.5]{arxiv:0909.4767}\cite[Sec. 3.4]{arxiv:1007.2905}. For multiplicity-free spaces such as symmetric spaces, the zonal spherical functions form an Abelian algebra, and the behavior of such functions can be used to obtain bounds on code parameters such as the Levenshtein bound \cite{manual:{V. I. Levenshtein, "On choosing polynomials to obtain bounds in packing problems." Proc. Seventh All-Union Conf. on Coding Theory and Information Transmission, Part II, Moscow, Vilnius. 1978.},manual:{V. I. Levenshtein, “On bounds for packings in n-dimensional Euclidean space”, Dokl. Akad. Nauk SSSR, 245:6 (1979), 1299–1303},manual:{V. I. Levenshtein. Bounds for packings of metric spaces and some of their applications. Problemy Kibernet, 40 (1983), 43-110.}}.'
35+
detail: 'Infinite symmetric spaces are homogeneous spaces with an appropriately defined inversion operation. Finite symmetric spaces are defined in coding theory as spaces admitting a generously transitive group action \cite[Def. 4.5]{arxiv:0909.4767}\cite[Sec. 3.4]{arxiv:1007.2905}. For multiplicity-free spaces such as symmetric spaces, the zonal spherical functions form an Abelian algebra, and the behavior of such functions can be used to obtain bounds on code parameters such as the Levenshtein bound \cite{manual:{V. I. Levenshtein, "On choosing polynomials to obtain bounds in packing problems." Proc. Seventh All-Union Conf. on Coding Theory and Information Transmission, Part II, Moscow, Vilnius. 1978.},manual:{V. I. Levenshtein, “On bounds for packings in n-dimensional Euclidean space”, Dokl. Akad. Nauk SSSR, 245:6 (1979), 1299–1303},manual:{V. I. Levenshtein. Bounds for packings of metric spaces and some of their applications. Problemy Kibernet, 40 (1983), 43-110.}}.'
3636
# Also in homogeneous_space_classical
3737
cousins:
3838
- code_id: points_into_lattices

codes/classical/matrices/sum-rank-metric/rank-metric/rank_metric.yml

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,8 @@ relations:
5454
- code_id: sum_rank_metric
5555
detail: 'The sum-rank metric generalizes both the Hamming metric and the rank metric \cite{arxiv:1710.03109}.'
5656
- code_id: 2pt_homogeneous
57-
detail: 'Matrices of dimension \(m\times n\) over \(\mathbb{F}_q\) are in one-to-one correspondence with bilinear forms, which form a finite two-point homogeneous space \cite{doi:10.1016/0097-3165(78)90015-8,doi:10.1007/978-94-010-9787-1_2,doi:10.1016/j.jcta.2010.05.006}\cite[Table 2]{arxiv:1007.2905}.'
57+
detail: 'Matrices of dimension \(m\times n\) over \(\mathbb{F}_q\) form a finite two-point homogeneous space \cite{doi:10.1016/0097-3165(78)90015-8,doi:10.1007/978-94-010-9787-1_2,doi:10.1016/j.jcta.2010.05.006}\cite[Table 2]{arxiv:1007.2905}.'
58+
# are in one-to-one correspondence with bilinear forms, which
5859
cousins:
5960
- code_id: subspace
6061
detail: 'An \(m \times n\) rank-metric codeword \(A\) can be \textit{lifted} to a subspace codeword \((I | A)\) that generates an \(m\)-dimensional subspace \cite{arxiv:0711.0708}\cite[Def. 14.5.21]{preset:HKSprojective}.'

codes/classical/spherical/polytope/self_dual_polytope.yml

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,9 @@ description: |
1616
relations:
1717
parents:
1818
- code_id: dual_polytope
19+
cousins:
20+
- code_id: self_dual_lattice
21+
- code_id: self_dual
1922

2023

2124
# Begin Entry Meta Information

0 commit comments

Comments
 (0)