Skip to content

Commit dde1395

Browse files
committed
reed_solomon_4
1 parent 9e3b756 commit dde1395

File tree

5 files changed

+52
-8
lines changed

5 files changed

+52
-8
lines changed

codes/classical/analog/sphere_packing/lattice/dual/eeight.yml

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -52,8 +52,6 @@ relations:
5252
cousins:
5353
- code_id: hamming844
5454
detail: 'The \([8,4,4]\) extended Hamming code yields the \(E_8\) Gosset lattice via \term{Construction A} \cite[Exam. 10.5.2]{preset:EricZin}\cite[pg. 138]{doi:10.1007/978-1-4757-6568-7}.'
55-
- code_id: q-ary_hamming
56-
detail: 'The \([4,2,3]_3\) ternary Hamming code can be used to obtain the \(E_8\) Gosset lattice \cite[Exam. 10.5.5]{preset:EricZin}.'
5755
- code_id: repetition
5856
detail: 'The \([8,1,8]\) repetition code can be used to obtain the \(E_8\) Gosset lattice \cite[Exam. 10.7.1]{preset:EricZin}.'
5957
- code_id: sharp_config

codes/classical/q-ary_digits/ag/reed_solomon/rs/reed_solomon.yml

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -102,10 +102,6 @@ relations:
102102
detail: 'RS codes can be used to construct LTCs encoding \(k\) bits with length \(k \text{polylog}(k)\) and query complexity \(\text{polylog}(k)\) \cite{doi:10.1137/050646445}.'
103103
- code_id: pir
104104
detail: 'RS codes can be used to construct PIR codes \cite{doi:10.1109/ISIT45174.2021.9517900}.'
105-
- code_id: hamming844
106-
detail: 'The \([4,2,3]_4\) RS code is the smallest example of a quaternary quadratic-residue code and can be mapped to the \([8,4,4]\) extended Hamming code \cite[Sec. 2.4.2]{doi:10.1007/3-540-30731-1} by identifying \((0,\omega,\bar{\omega},1)\) with \((00),(10),(01),(11)\) \cite{doi:10.1006/ffta.2001.0333}.'
107-
- code_id: q-ary_quad_residue
108-
detail: 'The \([4,2,3]_4\) RS code is the smallest example of a quaternary quadratic-residue code and can be mapped to the \([8,4,4]\) extended Hamming code \cite[Sec. 2.4.2]{doi:10.1007/3-540-30731-1} by identifying \((0,\omega,\bar{\omega},1)\) with \((00),(10),(01),(11)\) \cite{doi:10.1006/ffta.2001.0333}.'
109105

110106

111107

codes/classical/q-ary_digits/easy/q-ary_hamming.yml

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,8 +34,6 @@ relations:
3434
detail: 'Hamming codes are equivalent to cyclic codes when \(q\) and \(r\) are relatively prime (\cite{preset:MacSlo}, pg. 194).'
3535
- code_id: bch
3636
detail: 'Some narrow sense BCH codes of length \(n=(q^r-1)/(q-1)\) such that \(\text{gcd}(r,q-1)=1\) are \(q\)-ary Hamming codes (\cite{doi:10.1017/CBO9780511807077}, Thm. 5.1.4).'
37-
- code_id: mds
38-
detail: 'The \([4,2,3]_3\) Hamming code is a unique MDS code \cite{manual:{Taussky, Olga, and John Todd. "Covering theorems for groups." Bulletin of the American Mathematical Society. Vol. 54. No. 3. 201 CHARLES ST, PROVIDENCE, RI 02940-2213: AMER MATHEMATICAL SOC, 1948.},doi:10.1112/jlms/s1-44.1.60}.'
3937

4038

4139
# Begin Entry Meta Information
Lines changed: 49 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,49 @@
1+
#######################################################
2+
## This is a code entry in the error correction zoo. ##
3+
## https://github.com/errorcorrectionzoo ##
4+
#######################################################
5+
6+
code_id: reed_solomon_4
7+
physical: q-ary_digits
8+
logical: q-ary_digits
9+
10+
name: '\([4,2,3]_4\) RS\(_4\) code'
11+
short_name: 'RS\(_4\)'
12+
13+
alternative_names:
14+
- '\(XQ(\mathbb{F}_4,3)\)'
15+
16+
description: |
17+
A Type II Euclidean self-dual RS code that is the smallest quaternary extended QR code \cite[Sec. 2.4.2]{doi:10.1007/3-540-30731-1}.
18+
19+
A generator matrix for the code is
20+
\begin{align}
21+
\begin{pmatrix}
22+
1 & 1 & 1 & 1 \\
23+
0 & 1 & \omega & \omega^2
24+
\end{pmatrix}~,
25+
\end{align}
26+
where \(\mathbb{F}_4 = \{0,1,\omega, \bar{\omega}\}\) is the \hyperref[topic:finite-fields]{quaternary Galois field}.
27+
28+
The automorphism group of the code is \(3.S_4\) \cite[Sec. 2.4.2]{doi:10.1007/3-540-30731-1}.
29+
30+
31+
relations:
32+
parents:
33+
- code_id: self_dual
34+
detail: 'The RS\(_4\) is the smallest Type II Euclidean self-dual code \cite[Sec. 2.4.2]{doi:10.1007/3-540-30731-1}.'
35+
- code_id: reed_solomon
36+
- code_id: small_distance
37+
cousins:
38+
- code_id: q-ary_quad_residue
39+
detail: 'The RS\(_4\) code is the smallest quaternary extended QR code \cite[Sec. 2.4.2]{doi:10.1007/3-540-30731-1}.'
40+
- code_id: hamming844
41+
detail: 'The RS\(_4\) code can be mapped to the \([8,4,4]\) extended Hamming code \cite[Sec. 2.4.2]{doi:10.1007/3-540-30731-1} by identifying \((0,\omega,\bar{\omega},1)\) with \((00),(10),(01),(11)\) \cite{doi:10.1006/ffta.2001.0333}.'
42+
43+
44+
# Begin Entry Meta Information
45+
_meta:
46+
# Change log - most recent first
47+
changelog:
48+
- user_id: VictorVAlbert
49+
date: '2026-01-03'

codes/classical/q-ary_digits/easy/tetracode.yml

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -34,6 +34,7 @@ relations:
3434
- code_id: q-ary_hamming
3535
detail: 'The tetracode is equivalent to the \(r=2\) \(3\)-ary Hamming code.'
3636
- code_id: mds
37+
detail: 'The tetracode is a unique MDS code \cite{manual:{Taussky, Olga, and John Todd. "Covering theorems for groups." Bulletin of the American Mathematical Society. Vol. 54. No. 3. 201 CHARLES ST, PROVIDENCE, RI 02940-2213: AMER MATHEMATICAL SOC, 1948.},doi:10.1112/jlms/s1-44.1.60}.'
3738
- code_id: extended_reed_solomon
3839
detail: 'The tetracode is an extended RS code \cite[pg. 81]{doi:10.1007/978-1-4757-6568-7}.'
3940
- code_id: lexicographic
@@ -42,6 +43,8 @@ relations:
4243
- code_id: ternary_golay
4344
detail: 'Extended ternary Golay codewords can be obtained from tetracodewords \cite{doi:10.1007/978-1-4757-6568-7}.
4445
The tetracode can be used to decode the extended ternary Golay code \cite{doi:10.1109/TIT.1986.1057197}.'
46+
- code_id: eeight
47+
detail: 'The \([4,2,3]_3\) tetracode can be used to obtain the \(E_8\) Gosset lattice \cite[Exam. 10.5.5]{preset:EricZin}.'
4548

4649

4750
# Begin Entry Meta Information

0 commit comments

Comments
 (0)