@@ -15,8 +15,10 @@ Return the hypergraph product code of matrices `A` and `B`.
1515
1616# Example
1717
18+ [[1922, 50, 16]] Hypergraph Product Code from Appendix B, Example C1 of [panteleev2021degenerate](@cite).
19+
1820```jldoctest
19- [1922, 50, 16]] Hypergraph Product Code from Appendix B, Example C1 of [panteleev2021degenerate](@cite).
21+ julia> using CodingTheory, Oscar;
2022
2123julia> F, x = polynomial_ring(Oscar.Nemo.Native.GF(2), :x);
2224
@@ -285,6 +287,8 @@ Return the generealized bicycle code given by `A` and `B`.
285287[[254, 28, 14 ≤ d ≤ 20]] Generalized Bicycle Code from Appendix B, Example A1 of [panteleev2021degenerate](@cite).
286288
287289```jldoctest
290+ julia> using CodingTheory, Oscar;
291+
288292julia> F = Oscar.Nemo.Native.GF(2);
289293
290294julia> S, x = polynomial_ring(F, :x);
@@ -558,6 +562,8 @@ Return the lifted product code given by the matrices `A` and `B`.
558562[[882, 24, 18 ≤ d ≤ 24]] Lifted Product Code from Appendix B, Example B1 of [panteleev2021degenerate](@cite).
559563
560564```jldoctest
565+ julia> using CodingTheory, Oscar;
566+
561567julia> F = Oscar.Nemo.Native.GF(2);
562568
563569julia> S, x = polynomial_ring(F, :x);
@@ -649,6 +655,8 @@ Return the pre-lifted stabilizer matrix for bias-tailored lifted product code of
649655[[882, 24, d ≤ 24]] BiasTailored Lifted Product Code from Appendix B of [roffe2023bias](@cite).
650656
651657```jldoctest
658+ julia> using CodingTheory, Oscar;
659+
652660julia> F = Oscar.Nemo.Native.GF(2);
653661
654662julia> S, x = polynomial_ring(F, :x);
@@ -722,6 +730,35 @@ Return the single-parity-check `D`-fold product code.
722730
723731# Note
724732- This is defined in https://arxiv.org/abs/2209.13474
733+
734+ # Example
735+
736+ [512, 174, 8]] Symmetric 2-fold product CSS code from [ostrev2024classical](@cite)
737+
738+ ```jldoctest
739+ julia> using CodingTheory, Oscar;
740+
741+ julia> F = Oscar.Nemo.Native.GF(2);
742+
743+ julia> h = matrix(F, [1 1]);
744+
745+ julia> id = identity_matrix(F, 2);
746+
747+ julia> H_X = vcat(
748+ h ⊗ h ⊗ h ⊗ id ⊗ id ⊗ id ⊗ id ⊗ id ⊗ id,
749+ id ⊗ id ⊗ id ⊗ h ⊗ h ⊗ h ⊗ id ⊗ id ⊗ id,
750+ id ⊗ id ⊗ id ⊗ id ⊗ id ⊗ id ⊗ h ⊗ h ⊗ h);
751+
752+ julia> H_Z = vcat(
753+ h ⊗ id ⊗ id ⊗ h ⊗ id ⊗ id ⊗ h ⊗ id ⊗ id,
754+ id ⊗ h ⊗ id ⊗ id ⊗ h ⊗ id ⊗ id ⊗ h ⊗ id,
755+ id ⊗ id ⊗ h ⊗ id ⊗ id ⊗ h ⊗ id ⊗ id ⊗ h);
756+
757+ julia> code = SPCDFoldProductCode(3);
758+
759+ julia> length(code), dimension(code)
760+ (512, 174)
761+ ```
725762"""
726763function SPCDFoldProductCode (D:: Int , s:: Int = 1 )
727764 vec_S = Vector {AbstractStabilizerCode} ()
@@ -737,8 +774,8 @@ function SPCDFoldProductCode(D::Int, s::Int = 1)
737774 end
738775
739776 S = symmetric_product (vec_S)
740- set_minimum_X_distance ! (S, 2 ^ D)
741- set_minimum_Z_distance ! (S, 2 ^ D)
777+ set_X_minimum_distance ! (S, 2 ^ D)
778+ set_Z_minimum_distance ! (S, 2 ^ D)
742779 S. pure = true
743780 # metacheck distance = 3
744781 return S
@@ -1088,7 +1125,7 @@ Return the coprime bivariate bicycle code defined by the residue ring elements `
10881125
10891126# Example
10901127
1091- [126, 12, 10]] Coprime Bivariate Bicycle Code from Table 2 of [wang2024coprime](@cite).
1128+ [[ 126, 12, 10]] Coprime Bivariate Bicycle Code from Table 2 of [wang2024coprime](@cite).
10921129
10931130```jldoctest
10941131julia> using CodingTheory, Oscar;
0 commit comments