-A popular approach to run multi-GPU ML workloads is with [`accelerate`](https://github.com/huggingface/accelerate) and [`torchrun`](https://docs.pytorch.org/docs/stable/elastic/run.html) as demonstrated in the [tutorials][ref-guides-mlp-tutorials]. In particular, the `accelerate launch` script in the [LLM fine-tuning tutorial][ref-mlp-llm-finetuning-tutorial] can be directly carried over to a Jupyter cell with a `%%bash` header (to run its contents interpreted by bash). For `torchrun`, one can adapt the command from the multi-node [nanotron tutorial][ref-mlp-llm-nanotron-tutorial] to run on a single GH200 node using the following line in a Jupyter cell
0 commit comments