Subtle bugs can occur when running multiple Jupyter notebooks concurrently that each assume access to the full node. Also, some notebooks may hold on to resources such as spawned child processes or allocated memory despite having completed. In this case, resources such as a GPU may still be busy, blocking another notebook from using it. Therefore, it is good practice to only keep one such notebook running that occupies the full node and restarting a kernel once a notebook has completed. If in doubt, system monitoring with `htop` and [nvdashboard](https://github.com/rapidsai/jupyterlab-nvdashboard) can be helpful for debugging.
0 commit comments