|
| 1 | +<!doctype html> |
| 2 | +<html> |
| 3 | +<link rel="preconnect" href="https://fonts.googleapis.com" /> |
| 4 | +<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin /> |
| 5 | +<link href="https://fonts.googleapis.com/css2?family=JetBrains+Mono:wght@100;400&display=swap" rel="stylesheet" /> |
| 6 | + |
| 7 | + |
| 8 | +<head> |
| 9 | + <meta charset="UTF-8" /> |
| 10 | + <title> |
| 11 | + EvalPerf: Evaluating Language Models for Efficient Code Generation |
| 12 | + </title> |
| 13 | + <script src="https://cdnjs.cloudflare.com/ajax/libs/PapaParse/5.3.0/papaparse.min.js"></script> |
| 14 | + <script src=" https://cdn.jsdelivr.net/npm/[email protected]/dist/echarts.min.js" ></script> |
| 15 | + <link rel="icon" href="https://images.emojiterra.com/google/noto-emoji/unicode-15/color/1024px/1f9d1-1f4bb.png" /> |
| 16 | + <link rel=" stylesheet" href=" https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" /> |
| 17 | + |
| 18 | + <link href=" https://cdn.jsdelivr.net/npm/[email protected]/themes/prism.css" rel=" stylesheet" /> |
| 19 | + <script src=" https://cdn.jsdelivr.net/npm/[email protected]/components/prism-core.min.js" ></script> |
| 20 | + <script src=" https://cdn.jsdelivr.net/npm/[email protected]/plugins/autoloader/prism-autoloader.min.js" ></script> |
| 21 | + |
| 22 | + <style> |
| 23 | + body { |
| 24 | + font-family: "JetBrains Mono", monospace; |
| 25 | + background-color: #ffffff; |
| 26 | + color: #000000; |
| 27 | + } |
| 28 | + |
| 29 | + th, |
| 30 | + td { |
| 31 | + text-align: left; |
| 32 | + width: fit-content; |
| 33 | + font-size: larger; |
| 34 | + } |
| 35 | + |
| 36 | + #notes h3 { |
| 37 | + margin-top: 1em; |
| 38 | + font-size: 2em; |
| 39 | + text-align: center; |
| 40 | + } |
| 41 | + </style> |
| 42 | +</head> |
| 43 | + |
| 44 | +<body> |
| 45 | + <div id="content" class="container d-flex flex-column align-items-center gap-3"> |
| 46 | + <h1 class="text-nowrap mt-5" style="font-size: xx-large;"> |
| 47 | + <b>Evaluating LLMs for Efficient Code Generation</b> |
| 48 | + </h1> |
| 49 | + <div class="d-flex flex-row justify-content-center gap-3"> |
| 50 | + <a href="https://openreview.net/forum?id=IBCBMeAhmC"><img |
| 51 | + src="https://img.shields.io/badge/Paper-COLM'24-a55fed.svg?style=for-the-badge"></a> |
| 52 | + <a href="https://github.com/evalplus/evalplus"><img |
| 53 | + src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" |
| 54 | + alt="github" class="img-fluid" /></a> |
| 55 | + <a href="https://pypi.org/project/evalplus"><img alt="PyPI - Version" |
| 56 | + src="https://img.shields.io/pypi/v/evalplus?style=for-the-badge&labelColor=black" class="img-fluid" /> |
| 57 | + </a> |
| 58 | + </div> |
| 59 | + <div class="container d-flex flex-row flex-nowrap fs-5"> |
| 60 | + |
| 61 | + |
| 62 | + <div class="container d-flex flex-column align-items-center"> |
| 63 | + <div> |
| 64 | + 🚀 Code Efficiency Evaluation requires: |
| 65 | + <ul> |
| 66 | + <li><strong>Performance-exercising tasks & inputs</strong> |
| 67 | + </li> |
| 68 | + <li><strong>Meaningful compound metric:</strong> |
| 69 | + </li> |
| 70 | + </ul> |
| 71 | + <p>Based on <strong>Differential Performance Evaluation</strong>, the EvalPerf dataset (current |
| 72 | + version 20240328) includes:</p> |
| 73 | + <ul> |
| 74 | + <li>118 performance-exercising tasks</li> |
| 75 | + <li>Each task is equipped with a <i>computationally challenging test input</i> generated by the SaS |
| 76 | + generator</li> |
| 77 | + <li>Differential Performance Score (DPS): <i>"DPS=80"</i> means <i>"submissions can outperform 80% |
| 78 | + of LLM solutions..."</i></li> |
| 79 | + <li>Pairwise comparison of LLMs' code efficiency over common passing tasks to ablate correctness impact |
| 80 | + </li> |
| 81 | + </ul> |
| 82 | + Check out our <a href="https://jw-liu.xyz/assets/pdf/jiawei-colm-evalperf-poster.pdf">COLM'24 poster</a> for |
| 83 | + a more detailed overview! |
| 84 | + </div> |
| 85 | + |
| 86 | + <pre style="padding-top: 0; padding-bottom: 0;"> |
| 87 | + <code class="language-bash"> |
| 88 | +pip install --upgrade "evalplus[perf,vllm] @ git+https://github.com/evalplus/evalplus" |
| 89 | +# Or `pip install "evalplus[perf,vllm]" --upgrade` for the latest stable release |
| 90 | + |
| 91 | +sudo sh -c 'echo 0 > /proc/sys/kernel/perf_event_paranoid' # Enable perf |
| 92 | +evalplus.evalperf --model "ise-uiuc/Magicoder-S-DS-6.7B" \ |
| 93 | + --backend vllm</code> |
| 94 | + </pre> |
| 95 | + <br /> |
| 96 | + <table id="leaderboard" |
| 97 | + class="table table-responsive table-striped table-bordered flex-shrink-1 border border-5"> |
| 98 | + </table> |
| 99 | + <h2 id="sponsor" class="text-nowrap mt-5">🤗 Acknowledgment</h2> |
| 100 | + <p> |
| 101 | + We thank |
| 102 | + <a href="https://openai.com/form/researcher-access-program/">OpenAI Researcher Access Program</a> for |
| 103 | + providing part of the compute. |
| 104 | + </p> |
| 105 | + </div> |
| 106 | + </div> |
| 107 | + </div> |
| 108 | + |
| 109 | + <script> |
| 110 | + const contextTable = document.getElementById("leaderboard"); |
| 111 | + const linkMapping = new Map([]); |
| 112 | + const hfLinkPrefix = "https://huggingface.co/"; |
| 113 | + const dataUrlPrefix = "results/evalperf"; |
| 114 | + |
| 115 | + // Load data |
| 116 | + var data = null; |
| 117 | + var dataUrl = dataUrlPrefix + "/COMBINED-RESULTS.json"; |
| 118 | + var xhr = new XMLHttpRequest(); |
| 119 | + xhr.open("GET", dataUrl, false); // false makes the request synchronous |
| 120 | + xhr.send(); |
| 121 | + |
| 122 | + if (xhr.status === 200) { |
| 123 | + var results = JSON.parse(xhr.responseText); |
| 124 | + data = new Map(Object.entries(results)); |
| 125 | + // convert each value to Map |
| 126 | + data.forEach((value, modelId) => { |
| 127 | + data.set(modelId, new Map(Object.entries(value))); |
| 128 | + }); |
| 129 | + data.forEach((value, modelId) => { |
| 130 | + // add link to model |
| 131 | + if (modelId.includes("--")) { |
| 132 | + modelId = modelId.split("--"); |
| 133 | + modelOrg = modelId[0]; |
| 134 | + modelId = modelId[1]; |
| 135 | + url = hfLinkPrefix + modelOrg + "/" + modelId; |
| 136 | + linkMapping.set(modelId, url); |
| 137 | + } else if (modelId.startsWith("gpt-4-")) { |
| 138 | + linkMapping.set( |
| 139 | + modelId, |
| 140 | + "https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4", |
| 141 | + ); |
| 142 | + } else if (modelId.startsWith("gpt-3.5-")) { |
| 143 | + linkMapping.set( |
| 144 | + modelId, |
| 145 | + "https://platform.openai.com/docs/models/gpt-3-5-turbo", |
| 146 | + ); |
| 147 | + } else if (modelId.startsWith("claude-3-")) { |
| 148 | + linkMapping.set( |
| 149 | + modelId, |
| 150 | + "https://www.anthropic.com/news/claude-3-family", |
| 151 | + ); |
| 152 | + } else if (modelId.startsWith("gemini-1.5-pro")) { |
| 153 | + linkMapping.set( |
| 154 | + modelId, |
| 155 | + "https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#sundar-note", |
| 156 | + ); |
| 157 | + } else if (modelId.startsWith("gemini-1.5-flash")) { |
| 158 | + linkMapping.set( |
| 159 | + modelId, |
| 160 | + "https://deepmind.google/technologies/gemini/flash/", |
| 161 | + ); |
| 162 | + } else if (modelId.startsWith("gpt-4o-")) { |
| 163 | + linkMapping.set(modelId, "https://openai.com/index/hello-gpt-4o/"); |
| 164 | + } else if (modelId.startsWith("deepseek-chat")) { |
| 165 | + linkMapping.set(modelId, "https://chat.deepseek.com/") |
| 166 | + } |
| 167 | + }); |
| 168 | + } else { |
| 169 | + alert( |
| 170 | + "Failed to load data from " + dataUrl + ". Please try again later.", |
| 171 | + ); |
| 172 | + } |
| 173 | + const globalData = data; |
| 174 | + const winrate_tag = "🏆 Win Rate (%)"; |
| 175 | + |
| 176 | + // each row represents a model |
| 177 | + const theaders = [ |
| 178 | + "#", // rank |
| 179 | + "Model", // model name |
| 180 | + "DPS", |
| 181 | + // "DPS Norm", |
| 182 | + "pass@1", |
| 183 | + winrate_tag, // computed over the same set of passing solutions |
| 184 | + ]; |
| 185 | + |
| 186 | + const displayTable = (table) => { |
| 187 | + var thead = document.createElement("thead"); |
| 188 | + var headerRow = document.createElement("tr"); |
| 189 | + // headers |
| 190 | + theaders.forEach(function (header) { |
| 191 | + var th = document.createElement("th"); |
| 192 | + th.classList.add("text-nowrap"); |
| 193 | + th.textContent = header; |
| 194 | + |
| 195 | + if (header == winrate_tag) { |
| 196 | + th.style.backgroundColor = "#EEFFEE"; |
| 197 | + } |
| 198 | + |
| 199 | + headerRow.appendChild(th); |
| 200 | + }); |
| 201 | + thead.appendChild(headerRow); |
| 202 | + table.appendChild(thead); |
| 203 | + |
| 204 | + // convert data to array of Map |
| 205 | + data = Array.from(globalData); |
| 206 | + data = data.map( |
| 207 | + ([modelId, value]) => new Map([["modelId", modelId], ...value]), |
| 208 | + ) |
| 209 | + data.sort((a, b) => b.get("win_rate") - a.get("win_rate")); |
| 210 | + |
| 211 | + var tbody = document.createElement("tbody"); |
| 212 | + // add rank |
| 213 | + var rank = 0; |
| 214 | + var last_best = null; |
| 215 | + var n_last_best = 1; |
| 216 | + data.forEach((row) => { |
| 217 | + var dataRow = document.createElement("tr"); |
| 218 | + // rank |
| 219 | + var rankCell = document.createElement("td"); |
| 220 | + dataRow.appendChild(rankCell); |
| 221 | + var modelCell = document.createElement("td"); |
| 222 | + var modelLink = document.createElement("a"); |
| 223 | + var modelId = row.get('modelId'); |
| 224 | + var modelName = modelId; |
| 225 | + if (modelId.includes("--")) { |
| 226 | + modelName = modelId.split("--")[1]; |
| 227 | + } |
| 228 | + var cur_win_rate = row.get('win_rate').toFixed(3); |
| 229 | + if (last_best != cur_win_rate) { |
| 230 | + rank += n_last_best; |
| 231 | + last_best = cur_win_rate; |
| 232 | + rankCell.textContent = rank; |
| 233 | + n_last_best = 1; |
| 234 | + } else { |
| 235 | + n_last_best += 1; |
| 236 | + } |
| 237 | + if (rank == 1) { |
| 238 | + modelLink.textContent = "🥇 " + modelName; |
| 239 | + } else if (rank == 2) { |
| 240 | + modelLink.textContent = "🥈 " + modelName; |
| 241 | + } else if (rank == 3) { |
| 242 | + modelLink.textContent = "🥉 " + modelName; |
| 243 | + } else { |
| 244 | + modelLink.textContent = modelName; |
| 245 | + } |
| 246 | + if (linkMapping.has(modelName)) { |
| 247 | + modelLink.href = linkMapping.get(modelName); |
| 248 | + } |
| 249 | + modelLink.classList.add("link-underline-primary"); |
| 250 | + modelLink.classList.add("text-nowrap"); |
| 251 | + modelCell.appendChild(modelLink); |
| 252 | + dataRow.appendChild(modelCell); |
| 253 | + dpsRow = document.createElement("td"); |
| 254 | + dpsRow.textContent = row.get("dps").toFixed(1); |
| 255 | + dataRow.appendChild(dpsRow); |
| 256 | + // dpsNormRow = document.createElement("td"); |
| 257 | + // dpsNormRow.textContent = row.get("dps_norm").toFixed(1); |
| 258 | + // dataRow.appendChild(dpsNormRow); |
| 259 | + passRow = document.createElement("td"); |
| 260 | + passRow.textContent = row.get("pass@1").toFixed(1); |
| 261 | + dataRow.appendChild(passRow); |
| 262 | + winRateRow = document.createElement("td"); |
| 263 | + winRateRow.textContent = (row.get('win_rate') * 100).toFixed(1); |
| 264 | + winRateRow.style.backgroundColor = "#EEFFEE"; |
| 265 | + dataRow.appendChild(winRateRow); |
| 266 | + tbody.appendChild(dataRow); |
| 267 | + }); |
| 268 | + table.appendChild(tbody); |
| 269 | + }; |
| 270 | + |
| 271 | + const clearTable = () => { |
| 272 | + contextTable.innerHTML = ""; |
| 273 | + }; |
| 274 | + |
| 275 | + const main = () => { |
| 276 | + clearTable(); |
| 277 | + displayTable(contextTable); |
| 278 | + }; |
| 279 | + |
| 280 | + main(); |
| 281 | + </script> |
| 282 | +</body> |
| 283 | + |
| 284 | +</html> |
0 commit comments