@@ -511,18 +511,18 @@ def test_ubigint_object_conversion(self, pandas, duckdb_cursor):
511511 converted_col = duckdb_cursor .sql ("select * from x" ).df ()
512512 if pandas .backend == "numpy_nullable" :
513513 float64 = np .dtype ("float64" )
514- assert isinstance (converted_col ["0" ].dtype , float64 .__class__ ) == True
514+ assert isinstance (converted_col ["0" ].dtype , float64 .__class__ )
515515 else :
516516 uint64 = np .dtype ("uint64" )
517- assert isinstance (converted_col ["0" ].dtype , uint64 .__class__ ) == True
517+ assert isinstance (converted_col ["0" ].dtype , uint64 .__class__ )
518518
519519 @pytest .mark .parametrize ("pandas" , [NumpyPandas ()])
520520 def test_double_object_conversion (self , pandas , duckdb_cursor ):
521521 data = [18446744073709551616 , 0 ]
522522 x = pandas .DataFrame ({"0" : pandas .Series (data = data , dtype = "object" )})
523523 converted_col = duckdb_cursor .sql ("select * from x" ).df ()
524524 double_dtype = np .dtype ("float64" )
525- assert isinstance (converted_col ["0" ].dtype , double_dtype .__class__ ) == True
525+ assert isinstance (converted_col ["0" ].dtype , double_dtype .__class__ )
526526
527527 @pytest .mark .parametrize ("pandas" , [NumpyPandas (), ArrowPandas ()])
528528 @pytest .mark .xfail (
@@ -569,7 +569,7 @@ def test_integer_conversion_fail(self, pandas, duckdb_cursor):
569569 converted_col = duckdb_cursor .sql ("select * from x" ).df ()
570570 print (converted_col ["0" ])
571571 double_dtype = np .dtype ("object" )
572- assert isinstance (converted_col ["0" ].dtype , double_dtype .__class__ ) == True
572+ assert isinstance (converted_col ["0" ].dtype , double_dtype .__class__ )
573573
574574 # Most of the time numpy.datetime64 is just a wrapper around a datetime.datetime object
575575 # But to support arbitrary precision, it can fall back to using an `int` internally
0 commit comments