You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: manifests/opendatahub/overlays/integration-odhdashboard/odhapplications/data-science-pipelines-odhapplication.yaml
betaText: This application is available for early access prior to official release.
9
+
betaTitle: Data Science Pipelines (beta)
10
+
betaText: This beta application is available for early access prior to official release.
11
11
displayName: Data Science Pipelines
12
12
description: Data Science Pipelines is a workflow platform with a focus on enabling Machine Learning operations such as Model development, experimentation, orchestration and automation.
Below are the list of samples that are currently running end to end taking the compiled Tekton yaml and deploying on a Tekton cluster directly. If you are interested more in the larger list of pipelines samples we are testing for whether they can be 'compiled to Tekton' format, please [look at the corresponding status page](https://github.com/opendatahub-io/ml-pipelines/tree/master/sdk/python/tests/README.md)
35
-
[DSP Tekton User Guide](https://github.com/opendatahub-io/ml-pipelines/tree/master/guides/kfp-user-guide) is a guideline for the possible ways to develop and consume Data Science Pipelines. It's recommended to go over at least one of the methods in the user guide before heading into the KFP Tekton Samples.
34
+
Below are the list of samples that are currently running end to end taking the compiled Tekton yaml and deploying on a Tekton cluster directly. If you are interested more in the larger list of pipelines samples we are testing for whether they can be 'compiled to Tekton' format, please [look at the corresponding status page](https://github.com/opendatahub-io/data-science-pipelines/tree/master/sdk/python/tests/README.md)
35
+
[DSP Tekton User Guide](https://github.com/opendatahub-io/data-science-pipelines/tree/master/guides/kfp-user-guide) is a guideline for the possible ways to develop and consume Data Science Pipelines. It's recommended to go over at least one of the methods in the user guide before heading into the KFP Tekton Samples.
36
36
## Prerequisites
37
37
- Install [OpenShift Pipelines Operator](https://docs.openshift.com/container-platform/4.7/cicd/pipelines/installing-pipelines.html). Then connect the cluster to the current shell with `oc`
- [MNIST End to End example with DSP components](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/e2e-mnist)
51
+
- [MNIST End to End example with DSP components](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/e2e-mnist)
52
52
53
-
- [Hyperparameter tuning using Katib](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/katib)
53
+
- [Hyperparameter tuning using Katib](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/katib)
54
54
55
-
- [Trusted AI Pipeline with AI Fairness 360 and Adversarial Robustness 360 components](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/trusted-ai)
55
+
- [Trusted AI Pipeline with AI Fairness 360 and Adversarial Robustness 360 components](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/trusted-ai)
56
56
57
-
- [Training and Serving Models with Watson Machine Learning](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/watson-train-serve#training-and-serving-models-with-watson-machine-learning)
57
+
- [Training and Serving Models with Watson Machine Learning](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/watson-train-serve#training-and-serving-models-with-watson-machine-learning)
- [Pipeline with Nested loops](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/nested-loops)
65
+
- [Pipeline with Nested loops](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/nested-loops)
66
66
67
-
- [Using Tekton Custom Task on DSP](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/tekton-custom-task)
67
+
- [Using Tekton Custom Task on DSP](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/tekton-custom-task)
68
68
69
-
- [The flip-coin pipeline using custom task](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/flip-coin-custom-task)
69
+
- [The flip-coin pipeline using custom task](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/flip-coin-custom-task)
70
70
71
-
- [Retrieve DSP run metadata using Kubernetes downstream API](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/k8s-downstream-api)
71
+
- [Retrieve DSP run metadata using Kubernetes downstream API](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/k8s-downstream-api)
Copy file name to clipboardExpand all lines: manifests/opendatahub/overlays/integration-odhdashboard/odhquickstarts/data-science-pipelines-odhquickstart.yaml
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -34,8 +34,8 @@ spec:
34
34
- title: Install Python SDK and compile sample pipeline
35
35
description: |-
36
36
### Install the Kubeflow Pipelines Python SDK
37
-
1. Follow the [Kubeflow Pipelines Tekton Python SDK Installation instructions](https://github.com/opendatahub-io/ml-pipelines/blob/master/samples/README.md#prerequisites)
38
-
2. Download, clone or copy the [flip-coin example pipeline](https://github.com/opendatahub-io/ml-pipelines/blob/master/samples/flip-coin/condition.py)
37
+
1. Follow the [Kubeflow Pipelines Tekton Python SDK Installation instructions](https://github.com/opendatahub-io/data-science-pipelines/blob/master/samples/README.md#prerequisites)
38
+
2. Download, clone or copy the [flip-coin example pipeline](https://github.com/opendatahub-io/data-science-pipelines/blob/master/samples/flip-coin/condition.py)
39
39
3. Compile the python pipeline defintion into a Tekton YAML:
0 commit comments