Skip to content

Commit 2777067

Browse files
authored
Merge pull request opendatahub-io#45 from gmfrasca/update-tile-route
chore(manifests): Update Dashboard Tile Route and repo links
2 parents d1f6c17 + d9e1a34 commit 2777067

File tree

2 files changed

+20
-20
lines changed

2 files changed

+20
-20
lines changed

manifests/opendatahub/overlays/integration-odhdashboard/odhapplications/data-science-pipelines-odhapplication.yaml

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -6,8 +6,8 @@ metadata:
66
opendatahub.io/categories: 'Model development,Model training,Model optimization,Data analysis,Data preprocessing'
77
spec:
88
beta: true
9-
betaTitle: Data Science Pipelines
10-
betaText: This application is available for early access prior to official release.
9+
betaTitle: Data Science Pipelines (beta)
10+
betaText: This beta application is available for early access prior to official release.
1111
displayName: Data Science Pipelines
1212
description: Data Science Pipelines is a workflow platform with a focus on enabling Machine Learning operations such as Model development, experimentation, orchestration and automation.
1313
provider: Red Hat
@@ -27,16 +27,16 @@ spec:
2727
validationConfigMap: ds-pipelines-dashboardtile-validation-result
2828
kfdefApplications: []
2929
#kfdefApplications: ['data-science-pipelines'] # https://github.com/opendatahub-io/odh-dashboard/issues/625
30-
route: ml-pipeline-ui
31-
internalRoute: ml-pipeline-ui
30+
route: ds-pipeline-ui
31+
internalRoute: ds-pipeline-ui
3232
getStartedMarkDown: |-
3333
# Getting Started With Data Science Pipelines
34-
Below are the list of samples that are currently running end to end taking the compiled Tekton yaml and deploying on a Tekton cluster directly. If you are interested more in the larger list of pipelines samples we are testing for whether they can be 'compiled to Tekton' format, please [look at the corresponding status page](https://github.com/opendatahub-io/ml-pipelines/tree/master/sdk/python/tests/README.md)
35-
[DSP Tekton User Guide](https://github.com/opendatahub-io/ml-pipelines/tree/master/guides/kfp-user-guide) is a guideline for the possible ways to develop and consume Data Science Pipelines. It's recommended to go over at least one of the methods in the user guide before heading into the KFP Tekton Samples.
34+
Below are the list of samples that are currently running end to end taking the compiled Tekton yaml and deploying on a Tekton cluster directly. If you are interested more in the larger list of pipelines samples we are testing for whether they can be 'compiled to Tekton' format, please [look at the corresponding status page](https://github.com/opendatahub-io/data-science-pipelines/tree/master/sdk/python/tests/README.md)
35+
[DSP Tekton User Guide](https://github.com/opendatahub-io/data-science-pipelines/tree/master/guides/kfp-user-guide) is a guideline for the possible ways to develop and consume Data Science Pipelines. It's recommended to go over at least one of the methods in the user guide before heading into the KFP Tekton Samples.
3636
## Prerequisites
3737
- Install [OpenShift Pipelines Operator](https://docs.openshift.com/container-platform/4.7/cicd/pipelines/installing-pipelines.html). Then connect the cluster to the current shell with `oc`
3838
39-
- Install [kfp-tekton](https://github.com/opendatahub-io/ml-pipelines/tree/master/sdk/README.md) SDK
39+
- Install [kfp-tekton](https://github.com/opendatahub-io/data-science-pipelines/tree/master/sdk/README.md) SDK
4040
4141
```
4242
# Set up the python virtual environment
@@ -48,24 +48,24 @@ spec:
4848
```
4949
5050
## Samples
51-
- [MNIST End to End example with DSP components](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/e2e-mnist)
51+
- [MNIST End to End example with DSP components](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/e2e-mnist)
5252
53-
- [Hyperparameter tuning using Katib](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/katib)
53+
- [Hyperparameter tuning using Katib](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/katib)
5454
55-
- [Trusted AI Pipeline with AI Fairness 360 and Adversarial Robustness 360 components](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/trusted-ai)
55+
- [Trusted AI Pipeline with AI Fairness 360 and Adversarial Robustness 360 components](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/trusted-ai)
5656
57-
- [Training and Serving Models with Watson Machine Learning](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/watson-train-serve#training-and-serving-models-with-watson-machine-learning)
57+
- [Training and Serving Models with Watson Machine Learning](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/watson-train-serve#training-and-serving-models-with-watson-machine-learning)
5858
59-
- [Lightweight python components example](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/lightweight-component)
59+
- [Lightweight python components example](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/lightweight-component)
6060
61-
- [The flip-coin pipeline](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/flip-coin)
61+
- [The flip-coin pipeline](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/flip-coin)
6262
63-
- [Nested pipeline example](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/nested-pipeline)
63+
- [Nested pipeline example](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/nested-pipeline)
6464
65-
- [Pipeline with Nested loops](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/nested-loops)
65+
- [Pipeline with Nested loops](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/nested-loops)
6666
67-
- [Using Tekton Custom Task on DSP](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/tekton-custom-task)
67+
- [Using Tekton Custom Task on DSP](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/tekton-custom-task)
6868
69-
- [The flip-coin pipeline using custom task](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/flip-coin-custom-task)
69+
- [The flip-coin pipeline using custom task](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/flip-coin-custom-task)
7070
71-
- [Retrieve DSP run metadata using Kubernetes downstream API](https://github.com/opendatahub-io/ml-pipelines/tree/master/samples/k8s-downstream-api)
71+
- [Retrieve DSP run metadata using Kubernetes downstream API](https://github.com/opendatahub-io/data-science-pipelines/tree/master/samples/k8s-downstream-api)

manifests/opendatahub/overlays/integration-odhdashboard/odhquickstarts/data-science-pipelines-odhquickstart.yaml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,8 +34,8 @@ spec:
3434
- title: Install Python SDK and compile sample pipeline
3535
description: |-
3636
### Install the Kubeflow Pipelines Python SDK
37-
1. Follow the [Kubeflow Pipelines Tekton Python SDK Installation instructions](https://github.com/opendatahub-io/ml-pipelines/blob/master/samples/README.md#prerequisites)
38-
2. Download, clone or copy the [flip-coin example pipeline](https://github.com/opendatahub-io/ml-pipelines/blob/master/samples/flip-coin/condition.py)
37+
1. Follow the [Kubeflow Pipelines Tekton Python SDK Installation instructions](https://github.com/opendatahub-io/data-science-pipelines/blob/master/samples/README.md#prerequisites)
38+
2. Download, clone or copy the [flip-coin example pipeline](https://github.com/opendatahub-io/data-science-pipelines/blob/master/samples/flip-coin/condition.py)
3939
3. Compile the python pipeline defintion into a Tekton YAML:
4040
```
4141
python condition.py

0 commit comments

Comments
 (0)