@@ -37,7 +37,7 @@ The square of the absolute value is computed as the product of `z` and its conju
3737The sum of two complex numbers ` z1 = a + b * i ` and ` z2 = c + d * i ` is computed by adding their real and imaginary parts separately:
3838
3939``` text
40- z1 + z2 = (a + b * i) + (c + d * i)
40+ z1 + z2 = (a + b * i) + (c + d * i)
4141 = (a + c) + (b + d) * i
4242```
4343
@@ -46,7 +46,7 @@ z1 + z2 = (a + b * i) + (c + d * i)
4646The difference of two complex numbers is obtained by subtracting their respective parts:
4747
4848``` text
49- z1 - z2 = (a + b * i) - (c + d * i)
49+ z1 - z2 = (a + b * i) - (c + d * i)
5050 = (a - c) + (b - d) * i
5151```
5252
@@ -55,7 +55,7 @@ z1 - z2 = (a + b * i) - (c + d * i)
5555The product of two complex numbers is defined as:
5656
5757``` text
58- z1 * z2 = (a + b * i) * (c + d * i)
58+ z1 * z2 = (a + b * i) * (c + d * i)
5959 = (a * c - b * d) + (b * c + a * d) * i
6060```
6161
@@ -64,7 +64,7 @@ z1 * z2 = (a + b * i) * (c + d * i)
6464The reciprocal of a non-zero complex number is given by:
6565
6666``` text
67- 1 / z = 1 / (a + b * i)
67+ 1 / z = 1 / (a + b * i)
6868 = a / (a^2 + b^2) - b / (a^2 + b^2) * i
6969```
7070
@@ -73,8 +73,8 @@ The reciprocal of a non-zero complex number is given by:
7373The division of one complex number by another is given by:
7474
7575``` text
76- z1 / z2 = z1 * (1 / z2)
77- = (a + b * i) / (c + d * i)
76+ z1 / z2 = z1 * (1 / z2)
77+ = (a + b * i) / (c + d * i)
7878 = (a * c + b * d) / (c^2 + d^2) + (b * c - a * d) / (c^2 + d^2) * i
7979```
8080
@@ -83,7 +83,7 @@ z1 / z2 = z1 * (1 / z2)
8383Raising _ e_ (the base of the natural logarithm) to a complex exponent can be expressed using Euler's formula:
8484
8585``` text
86- e^(a + b * i) = e^a * e^(b * i)
86+ e^(a + b * i) = e^a * e^(b * i)
8787 = e^a * (cos(b) + i * sin(b))
8888```
8989
0 commit comments