Skip to content

three_layer_net #3988

@Kana-Jpn

Description

@Kana-Jpn

#20250917Launch
#https://github.com/oreilly-japan/deep-learning-from-scratch/tree/master
import numpy as np
import sys,os
#from function sigmoid, softmax, cross_entropy
sys.path.append(os.pardir)
from common.functions import numerical_gradient
from common.functions import cross_entropy_error
from common.gradient import numerical_gradient

def sigmoid(x):
return 1/ (1+np.exp(-x))

def softmax(x):
return max(x,0,dtype=float)

def cross_entropy_error(y,t): #pytorchで代用できるかもしれない。
return -sumtnp.log(y)

class ThreeLayerNet:
def init(self, input_size, hidden_size1, hidden_size2, output_size, weight_init_std=0.01):
self.params = {}
# 1層目: Input → Hidden1
self.params["W1"] = weight_init_std * np.random.randn(input_size, hidden_size1) #weight_init_stdで初期化できる!
self.params["b1"] = np.zeros(hidden_size1) #np.zeros()で全部0に書き換え!

    # 2層目: Hidden1 → Hidden2
    self.params["W2"] = weight_init_std * np.random.randn(hidden_size1, hidden_size2)
    self.params["b2"] = np.zeros(hidden_size2)

    # 3層目: Hidden2 → Output
    self.params["W3"] = weight_init_std * np.random.randn(hidden_size2, output_size)
    self.params["b3"] = np.zeros(output_size)

def predict(self, x0):
    W1, W2, W3 = self.params["W1"], self.params["W2"], self.params["W3"]
    b1, b2, b3 = self.params["b1"], self.params["b2"], self.params["b3"]

    a1 = np.dot(x0, W1) + b1
    x1 = sigmoid(a1)

    a2 = np.dot(x1, W2) + b2
    x2 = sigmoid(a2)

    a3 = np.dot(x2, W3) + b3
    y  = softmax(a3)

    return y

def loss(self, x, t):
    y = self.predict(x)
    return cross_entropy_error(y, t)

def accuracy(self, x, t):
    y = self.predict(x)
    y = np.argmax(y, axis=1)
    t = np.argmax(t, axis=1)
    return np.sum(y == t) / float(x.shape[0])

def numerical_gradient(self, x, t):
    loss_W = lambda W: self.loss(x, t)
    grads = {}
    for key in ["W1", "b1", "W2", "b2", "W3", "b3"]:
     grads[key] = numerical_gradient(loss_W, self.params[key])

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions