@@ -51,35 +51,46 @@ If you are using AWS SageMaker of Jupyter Notebook deployed on the cloud, visit
5151## Example Usage
5252After successfully installing explainX, open up your Python IDE of Jupyter Notebook and simply follow the code below to use it:
5353
54- 1 . Import ** explainx ** module.
54+ 1 . Import required module.
5555
5656``` python
57- from explainx import *
57+ from explainx import *
58+ from sklearn.ensemble import RandomForestClassifier
59+ from sklearn.model_selection import train_test_split
60+
5861```
5962
60632 . Load and split your dataset into x_data and y_data
6164
6265``` python
63- # x_data = Pandas DataFrame
64- # y_data = Numpy Array or List
66+ # Load Dataset: X_Data, Y_Data
67+ # X_Data = Pandas DataFrame
68+ # Y_Data = Numpy Array or List
69+
70+ X_data,Y_data = explainx.dataset_heloc()
71+ ```
72+
73+ 3 . Split dataset into training & testing.
6574
66- x_data, y_data = explainx.dataset_boston()
75+ ``` python
76+ X_train, X_test, Y_train, Y_test = train_test_split(X_data,Y_data, test_size = 0.3 , random_state = 0 )
6777```
6878
69- 3 . Train your model.
79+ 4 . Train your model.
7080
7181``` python
72- # Train Model
73- model = xgboost.train({" learning_rate" : 0.01 }, xgboost.DMatrix(x_data, label = y_data), 100 )
82+ # Train a RandomForest Model
83+ model = RandomForestClassifier()
84+ model.fit(X_train, Y_train)
7485```
7586
76- 4 . Pass your model and dataset into the explainX function:
87+ 5 . Pass your model and dataset into the explainX function:
7788
7889``` python
79- explainx.ai(x_data, y_data , model, model_name = " xgboost " )
90+ explainx.ai(X_test, Y_test , model, model_name = " randomforest " )
8091```
8192
82- 5 . Click on the dashboard link to start exploring model behavior:
93+ 6 . Click on the dashboard link to start exploring model behavior:
8394
8495``` python
8596App running on https:// 0.0 .0.0:8080
0 commit comments