Skip to content

Commit 4a4496f

Browse files
committed
readme file updated
1 parent 70db005 commit 4a4496f

File tree

4 files changed

+50
-113
lines changed

4 files changed

+50
-113
lines changed

README.md

Lines changed: 50 additions & 113 deletions
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,20 @@
11
<h1 align="center">
2-
<img width="300" src="https://i.ibb.co/yY7tfDg/Logo.jpg" alt="explainX.ai">
2+
<img width="700" src="main_page_banner.png" alt="explainX.ai">
33
<br>
44
</h1>
55

66
<p align="center">
77
<a href="https://www.python.org/downloads/"><img src="https://img.shields.io/badge/python-3.6%20|%203.7|%203.8-brightgreen.svg" alt="Python supported"></a>
88
<!-- <a href="https://pypi.org/project/explainx/"><img src="https://badge.fury.io/py/explainx.svg" alt="PyPi Version"></a> -->
99
<!-- <a href="https://pypi.org/project/explainx/"><img src="https://img.shields.io/pypi/dm/explainx" alt="PyPi Downloads"></a> -->
10-
<a href="https://www.explainx.ai/"><img src="https://img.shields.io/website?url=https%3A%2F%2Fwww.explainx.ai%2F" alt="explainx.ai website"></a>
10+
<a href="https://www.explainx.ai/"> <img src="https://img.shields.io/website?url=https%3A%2F%2Fwww.explainx.ai%2F" alt="explainx.ai website"></a>
1111
</p>
1212

13+
ExplainX.ai is a fast, scalable and end-to-end Explainable AI framework for data scientists & machine learning engineers.
1314

14-
ExplainX.ai is a fast, light-weight and scalable Explainable AI framework for data scientists. It enables you to explain and debug state of the art machine learning models in as simple as one line of code. [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Explain%20any%20black-box%20Machine%20Learning%20model%20in%20just%20one%20line%20of%20code%21&url=https://www.explainx.ai&hashtags=xai,explainable_ai,explainable_machine_learning,trust_in_ai,transparent_ai)
15+
With explainX, you can understand overall model behavior, get the reasoning behind model predictions, remove biases and create convincing explanations for your business stakeholders. [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Explain%20any%20black-box%20Machine%20Learning%20model%20in%20just%20one%20line%20of%20code%21&url=https://www.explainx.ai&hashtags=xai,explainable_ai,explainable_machine_learning,trust_in_ai,transparent_ai)
1516

16-
<img width="600" src="https://i.ibb.co/w4SF1GJ/Group-2-1.png" alt="explainX.ai">
17-
18-
![Demo](demo.gif)
17+
<img width="800" src="started_example.png" alt="explainX.ai">
1918

2019
#### Why we need explainability & interpretibility?
2120

@@ -26,158 +25,96 @@ Essential for:
2625
4. Regulatory compliance - Does my model satisfy legal & regulatory requirements?
2726
5. High-risk applications - Healthcare, Financial Services, FinTech, Judicial, Security etc,.
2827

29-
Visit explainx.ai website to learn more: https://www.explainx.ai
30-
31-
28+
Visit our website to learn more: https://www.explainx.ai
3229

3330
## Try it out
3431

35-
* [Installing explainX](https://explainx-documentation.netlify.app/)
36-
* [Working Examples](https://explainx-documentation.netlify.app/working-example/)
37-
* [explainX Dashboard Features](https://explainx-documentation.netlify.app/analyze-dashboard/)
38-
* [Documentation](https://explainx-documentation.netlify.app/)
39-
* [Provide Feedback to Improve explainX.ai](https://forms.gle/5Q1xaHd7s6UQkRzf8)
32+
* [Installing explainX](https://docs.explainx.ai/getting-started/installation)
33+
* [Working Examples](https://docs.explainx.ai/getting-started/starter-example)
34+
* [explainX Dashboard Features](https://docs.explainx.ai/tutorials/analyzing-dashboard)
35+
* [Documentation](https://docs.explainx.ai/)
36+
* [Help Us Improve explainX.ai](https://forms.gle/5Q1xaHd7s6UQkRzf8)
4037

41-
## Installation on your laptop
4238

43-
* You can use **explainX** on your own computer in under a minute.
39+
# Installation
4440

45-
* Make sure you have **Python 3.5+**
41+
Python 3.5+ | Linux, Mac, Windows (Install [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) first to run on Windows.)
4642

47-
* Open the terminal and run the following to install **explainX**.
48-
```python
43+
```sh
4944
pip install explainx
5045
```
51-
* **Jupyter Notebook**: You can also install explainx via Jupyter Notebook. Just run the following command:
52-
53-
```python
54-
!pip install explainx
55-
```
5646

5747
## Installation on the cloud
48+
If you are using AWS SageMaker of Jupyter Notebook deployed on the cloud, visit our documentation for step-by-step guide installing and running explainX. [Cloud Installation Instructions](https://docs.explainx.ai/getting-started/installation)
5849

59-
* Make sure you have **Python 3.5+**
60-
* Install **nodejs** and **localtunnel** using the following instructions.
6150

62-
### To install **nodejs** and **localtunnel** on **MAC OS**
63-
* Open the terminal.
64-
* Install Xcode Command Line Tools using the following.
65-
```python
66-
xcode-select --install
67-
```
68-
* Install **brew** using the following.
69-
```python
70-
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
71-
```
72-
* Install **nodejs** using the following.
73-
```python
74-
brew install nodejs
75-
```
76-
* Install **localtunnel** using the following.
77-
```python
78-
npm install -g localtunnel
79-
```
80-
### To install **nodejs** and **localtunnel** on **Ubuntu**
81-
* Open the terminal.
82-
* Install **nodejs** using the following.
83-
```python
84-
sudo apt install nodejs
85-
```
86-
* Install **npm** using the following.
87-
```python
88-
sudo apt install npm
89-
```
90-
* Install **localtunnel** using the following.
91-
```python
92-
npm install -g localtunnel
93-
```
94-
### To install **nodejs** and **localtunnel** on **CentOS**
95-
* Open the terminal.
96-
* Run the following command.
97-
```python
98-
curl -sL https://rpm.nodesource.com/setup_10.x | sudo bash -
99-
```
100-
* Install **nodejs** using the following.
101-
```python
102-
sudo yum install nodejs
103-
```
104-
* Install **npm** using the following.
105-
```python
106-
sudo yum install npm
107-
```
108-
* Install **localtunnel** using the following.
109-
```python
110-
npm install -g localtunnel
111-
```
112-
### To install **nodejs** and **localtunnel** on **Windows**
113-
* Install [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) found [here](https://visualstudio.microsoft.com/visual-cpp-build-tools/).
114-
* Install [Nodejs](https://nodejs.org/en/download/) found [here](https://nodejs.org/en/download/).
115-
* Open the terminal and run the following to install **localtunnel**.
116-
```python
117-
npm install -g localtunnel
118-
```
51+
## Example Usage
52+
After successfully installing explainX, open up your Python IDE of Jupyter Notebook and simply follow the code below to use it:
11953

120-
### Lastly, install **ExplainX** using the following.
54+
1. Import **explainx** module.
12155

12256
```python
123-
pip install explainx
124-
```
125-
* **Jupyter Notebook**: You can also install explainx via Jupyter Notebook. Just run the following command:
126-
127-
```python
128-
!pip install explainx
57+
from explainx import *
12958
```
13059

131-
## Usage
132-
133-
Once you have install explainX, you can simply follow the example below to use it:
134-
135-
Import **explainx**
60+
2. Load and split your dataset into x_data and y_data
13661

13762
```python
138-
from explainx import *
63+
#x_data = Pandas DataFrame
64+
#y_data = Numpy Array or List
65+
66+
x_data, y_data = explainx.dataset_boston()
13967
```
14068

141-
Load dataset as X_Data, Y_Data in your XGBoost Model
69+
3. Train your model.
14270

14371
```python
144-
#X_Data = Pandas DataFrame
145-
#Y_Data = Numpy Array or List
146-
147-
X_Data, Y_Data = explainx.dataset_boston()
148-
14972
#Train Model
150-
model = xgboost.train({"learning_rate": 0.01}, xgboost.DMatrix(X_Data, label=Y_Data), 100)
73+
model = xgboost.train({"learning_rate": 0.01}, xgboost.DMatrix(x_data, label=y_data), 100)
15174
```
15275

153-
One line of code to **use the explainx module**
76+
4. Pass your model and dataset into the explainX function:
15477

15578
```python
156-
explainx.ai(X_Data, Y_Data, model, model_name="xgboost")
79+
explainx.ai(x_data, y_data, model, model_name="xgboost")
15780
```
15881

159-
Click on the link to view the dashboard.
82+
5. Click on the dashboard link to start exploring model behavior:
16083

161-
```jupyter
84+
```python
16285
App running on https://0.0.0.0:8080
16386
```
164-
**Running ExplainX on the cloud e.g., AWS Sagemaker?** **https://0.0.0.0:8080** will not work. You would need to open the **terminal** and run the following command.
16587

88+
**If you are running explainX on the cloud e.g., AWS Sagemaker?** **https://0.0.0.0:8080** will not work.
89+
Please visit our documentation for installation instructions for the cloud: [Cloud Installation Instructions](https://docs.explainx.ai/getting-started/installation)
90+
91+
After installation is complete, just open your **terminal** and run the following command.
16692
```jupyter
16793
lt -h "https://serverless.social" -p [port number]
16894
```
16995
```jupyter
17096
lt -h "https://serverless.social" -p 8080
17197
```
172-
Learn to analyze the dashboard by following this link: [explainX Dashboard Features](https://explainx-documentation.netlify.app/analyze-dashboard/)
17398

174-
Visit the documentation to [learn more](https://explainx-documentation.netlify.app/)
99+
<img width="1000" src="demo-explainx-with-sound.gif" alt="explainX.ai">
175100

176-
## Models Supported
177-
CatBoost, XGBoost, Scikit-learn Models, SVM, Neural Networks
101+
Learn to analyze the dashboard by following this link: [explainX Dashboard Features](https://explainx-documentation.netlify.app/analyze-dashboard/)
178102

103+
Visit the documentation to [learn more](https://docs.explainx.ai/)
179104

180-
## Video Tutorial
105+
## Models Supported
106+
1. Catboost
107+
2. xgboost==1.0.2
108+
3. Gradient Boosting Regressor
109+
4. RandomForest Model
110+
5. SVM
111+
6. KNeighboursClassifier
112+
7. Logistic Regression
113+
8. DecisionTreeClassifier
114+
9. Scikit-learn Models
115+
10. Neural Networks
116+
117+
## Walkthough Video Tutorial
181118

182119
Please click on the image below to load the tutorial:
183120

demo-explainx-with-sound.gif

8.32 MB
Loading

main_page_banner.png

122 KB
Loading

started_example.png

111 KB
Loading

0 commit comments

Comments
 (0)