You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
ExplainX.ai is a fast, scalable and end-to-end Explainable AI framework for data scientists & machine learning engineers.
13
14
14
-
ExplainX.ai is a fast, light-weight and scalable Explainable AI framework for data scientists. It enables you to explain and debug state of the art machine learning models in as simple as one line of code. [](https://twitter.com/intent/tweet?text=Explain%20any%20black-box%20Machine%20Learning%20model%20in%20just%20one%20line%20of%20code%21&url=https://www.explainx.ai&hashtags=xai,explainable_ai,explainable_machine_learning,trust_in_ai,transparent_ai)
15
+
With explainX, you can understand overall model behavior, get the reasoning behind model predictions, remove biases and create convincing explanations for your business stakeholders. [](https://twitter.com/intent/tweet?text=Explain%20any%20black-box%20Machine%20Learning%20model%20in%20just%20one%20line%20of%20code%21&url=https://www.explainx.ai&hashtags=xai,explainable_ai,explainable_machine_learning,trust_in_ai,transparent_ai)
*[Help Us Improve explainX.ai](https://forms.gle/5Q1xaHd7s6UQkRzf8)
40
37
41
-
## Installation on your laptop
42
38
43
-
* You can use **explainX** on your own computer in under a minute.
39
+
# Installation
44
40
45
-
* Make sure you have **Python 3.5+**
41
+
Python 3.5+ | Linux, Mac, Windows (Install [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) first to run on Windows.)
46
42
47
-
* Open the terminal and run the following to install **explainX**.
48
-
```python
43
+
```sh
49
44
pip install explainx
50
45
```
51
-
***Jupyter Notebook**: You can also install explainx via Jupyter Notebook. Just run the following command:
52
-
53
-
```python
54
-
!pip install explainx
55
-
```
56
46
57
47
## Installation on the cloud
48
+
If you are using AWS SageMaker of Jupyter Notebook deployed on the cloud, visit our documentation for step-by-step guide installing and running explainX. [Cloud Installation Instructions](https://docs.explainx.ai/getting-started/installation)
58
49
59
-
* Make sure you have **Python 3.5+**
60
-
* Install **nodejs** and **localtunnel** using the following instructions.
61
50
62
-
### To install **nodejs** and **localtunnel** on **MAC OS**
63
-
* Open the terminal.
64
-
* Install Xcode Command Line Tools using the following.
### To install **nodejs** and **localtunnel** on **Windows**
113
-
* Install [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) found [here](https://visualstudio.microsoft.com/visual-cpp-build-tools/).
114
-
* Install [Nodejs](https://nodejs.org/en/download/) found [here](https://nodejs.org/en/download/).
115
-
* Open the terminal and run the following to install **localtunnel**.
116
-
```python
117
-
npm install -g localtunnel
118
-
```
51
+
## Example Usage
52
+
After successfully installing explainX, open up your Python IDE of Jupyter Notebook and simply follow the code below to use it:
119
53
120
-
### Lastly, install **ExplainX**using the following.
54
+
1. Import **explainx**module.
121
55
122
56
```python
123
-
pip install explainx
124
-
```
125
-
***Jupyter Notebook**: You can also install explainx via Jupyter Notebook. Just run the following command:
126
-
127
-
```python
128
-
!pip install explainx
57
+
from explainx import*
129
58
```
130
59
131
-
## Usage
132
-
133
-
Once you have install explainX, you can simply follow the example below to use it:
134
-
135
-
Import **explainx**
60
+
2. Load and split your dataset into x_data and y_data
136
61
137
62
```python
138
-
from explainx import*
63
+
#x_data = Pandas DataFrame
64
+
#y_data = Numpy Array or List
65
+
66
+
x_data, y_data = explainx.dataset_boston()
139
67
```
140
68
141
-
Load dataset as X_Data, Y_Data in your XGBoost Model
69
+
3. Train your model.
142
70
143
71
```python
144
-
#X_Data = Pandas DataFrame
145
-
#Y_Data = Numpy Array or List
146
-
147
-
X_Data, Y_Data = explainx.dataset_boston()
148
-
149
72
#Train Model
150
-
model = xgboost.train({"learning_rate": 0.01}, xgboost.DMatrix(X_Data, label=Y_Data), 100)
73
+
model = xgboost.train({"learning_rate": 0.01}, xgboost.DMatrix(x_data, label=y_data), 100)
151
74
```
152
75
153
-
One line of code to **use the explainx module**
76
+
4. Pass your model and dataset into the explainX function:
5.Click on the dashboard link to start exploring model behavior:
160
83
161
-
```jupyter
84
+
```python
162
85
App running on https://0.0.0.0:8080
163
86
```
164
-
**Running ExplainX on the cloud e.g., AWS Sagemaker?****https://0.0.0.0:8080** will not work. You would need to open the **terminal** and run the following command.
165
87
88
+
**If you are running explainX on the cloud e.g., AWS Sagemaker?****https://0.0.0.0:8080** will not work.
89
+
Please visit our documentation for installation instructions for the cloud: [Cloud Installation Instructions](https://docs.explainx.ai/getting-started/installation)
90
+
91
+
After installation is complete, just open your **terminal** and run the following command.
0 commit comments