Skip to content

Commit 8b8bd89

Browse files
authored
Update README.md
1 parent ea3e580 commit 8b8bd89

File tree

1 file changed

+63
-46
lines changed

1 file changed

+63
-46
lines changed

README.md

Lines changed: 63 additions & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -1,54 +1,56 @@
1-
<h1 align="center">
2-
<img width="700" src="main_page_banner.png" alt="explainX.ai">
3-
<br>
4-
</h1>
1+
# explainX: Explain & Debug Any Machine Learning Model With A Single Line of Code
2+
<img src="explainx_logo.png" align="right" width="150"/>
53

6-
<p align="center">
7-
<a href="https://www.python.org/downloads/"><img src="https://img.shields.io/badge/python-3.6%20|%203.7|%203.8-brightgreen.svg" alt="Python supported"></a>
8-
<!-- <a href="https://pypi.org/project/explainx/"><img src="https://badge.fury.io/py/explainx.svg" alt="PyPi Version"></a> -->
9-
<!-- <a href="https://pypi.org/project/explainx/"><img src="https://img.shields.io/pypi/dm/explainx" alt="PyPi Downloads"></a> -->
10-
<a href="https://www.explainx.ai/"> <img src="https://img.shields.io/website?url=https%3A%2F%2Fwww.explainx.ai%2F" alt="explainx.ai website"></a>
11-
</p>
4+
#### ExplainX.ai is a model explainability/interpretability framework for data scientists and business users.
125

13-
ExplainX.ai is a fast, scalable and end-to-end Explainable AI framework for data scientists & machine learning engineers.
6+
[![Supported Python versions](https://img.shields.io/badge/python-3.6%20|%203.7|%203.8-brightgreen.svg)](https://pypi.org/project/explainx/)
7+
[![Downloads](https://pepy.tech/badge/dalex)](https://pepy.tech/project/dalex)
8+
![Maintenance](https://img.shields.io/maintenance/yes/2020?style=flat-square)
9+
[![Website](https://img.shields.io/website?url=https%3A%2F%2Fwww.explainx.ai%2F)](https://www.explainx.ai/)
1410

15-
Understand overall model behavior, get the reasoning behind model predictions, remove biases and create convincing explanations for your business stakeholders with explainX. [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Explain%20any%20black-box%20Machine%20Learning%20model%20in%20just%20one%20line%20of%20code%21&url=https://www.explainx.ai&hashtags=xai,explainable_ai,explainable_machine_learning,trust_in_ai,transparent_ai)
11+
12+
Use explainX to understand overall model behavior, explain the "why" behind model predictions, remove biases and create convincing explanations for your business stakeholders. [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Explain%20any%20black-box%20Machine%20Learning%20model%20in%20just%20one%20line%20of%20code%21&url=https://www.explainx.ai&hashtags=xai,explainable_ai,explainable_machine_learning,trust_in_ai,transparent_ai)
1613

1714
<img width="1000" src="rf_starter_example.png" alt="explainX.ai">
1815

19-
#### Why we need explainability & interpretibility?
16+
ExplainX.ai is a model explainability/interpretability framework for data scientists and business users.
17+
18+
#### Why we need model explainability & interpretibility?
2019

2120
Essential for:
22-
1. Model debugging - Why did my model make a mistake?
23-
2. Detecting fairness issues - Is my model biased? If yes, where?
24-
3. Human-AI cooperation - How can I understand and trust the model's decisions?
25-
4. Regulatory compliance - Does my model satisfy legal & regulatory requirements?
26-
5. High-risk applications - Healthcare, Financial Services, FinTech, Judicial, Security etc,.
21+
1. Explaining model predictions
22+
2. Debugging models
23+
3. Detecting biases in data
24+
4. Gaining trust of business users
25+
5. Successfully deploying AI solution
2726

28-
Visit our website to learn more: https://www.explainx.ai
27+
#### What questions can we answer with explainX?
2928

30-
## Try it out
29+
1. Why did my model make a mistake?
30+
2. Is my model biased? If yes, where?
31+
3. How can I understand and trust the model's decisions?
32+
4. Does my model satisfy legal & regulatory requirements?
3133

32-
* [Installing explainX](https://docs.explainx.ai/getting-started/installation)
33-
* [Working Examples](https://docs.explainx.ai/getting-started/starter-example)
34-
* [explainX Dashboard Features](https://docs.explainx.ai/tutorials/analyzing-dashboard)
35-
* [Documentation](https://docs.explainx.ai/)
36-
* [Help Us Improve explainX.ai](https://forms.gle/5Q1xaHd7s6UQkRzf8)
34+
Visit our website to learn more: https://www.explainx.ai
3735

36+
# Get Started
3837

39-
# Installation
38+
## Installation
4039

41-
Python 3.5+ | Linux, Mac, Windows (Install [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) first to run on Windows.)
40+
Python 3.5+ | Linux, Mac, Windows
4241

4342
```sh
4443
pip install explainx
4544
```
4645

46+
To download on Windows, please install [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) first and then install the explainX package via ``` pip ```
47+
4748
## Installation on the cloud
48-
If you are using AWS SageMaker of Jupyter Notebook deployed on the cloud, visit our documentation for step-by-step guide installing and running explainX. [Cloud Installation Instructions](https://docs.explainx.ai/getting-started/installation)
49+
If you are using a notebook instance on the cloud (AWS SageMaker, Colab, Azure), please follow our step-by-step guide to install & run explainX cloud.
50+
[Cloud Installation Instructions](https://docs.explainx.ai/getting-started/installation)
4951

5052

51-
## Example Usage
53+
## Usage (Example)
5254
After successfully installing explainX, open up your Python IDE of Jupyter Notebook and simply follow the code below to use it:
5355

5456
1. Import required module.
@@ -57,7 +59,6 @@ After successfully installing explainX, open up your Python IDE of Jupyter Noteb
5759
from explainx import *
5860
from sklearn.ensemble import RandomForestClassifier
5961
from sklearn.model_selection import train_test_split
60-
6162
```
6263

6364
2. Load and split your dataset into x_data and y_data
@@ -109,22 +110,6 @@ lt -h "https://serverless.social" -p 8080
109110

110111
<img width="1000" src="demo-explainx-with-sound.gif" alt="explainX.ai">
111112

112-
Learn to analyze the dashboard by following this link: [explainX Dashboard Features](https://explainx-documentation.netlify.app/analyze-dashboard/)
113-
114-
Visit the documentation to [learn more](https://docs.explainx.ai/)
115-
116-
## Models Supported
117-
1. Catboost
118-
2. xgboost==1.0.2
119-
3. Gradient Boosting Regressor
120-
4. RandomForest Model
121-
5. SVM
122-
6. KNeighboursClassifier
123-
7. Logistic Regression
124-
8. DecisionTreeClassifier
125-
9. Scikit-learn Models
126-
10. Neural Networks
127-
128113
## Walkthough Video Tutorial
129114

130115
Please click on the image below to load the tutorial:
@@ -133,6 +118,38 @@ Please click on the image below to load the tutorial:
133118

134119
(Note: Please manually set it to 720p or greater to have the text appear clearly)
135120

121+
## Supported Techniques
122+
123+
|Interpretability Technique | Status |
124+
|--|--|
125+
|SHAP Kernel Explainer| Live |
126+
|SHAP Tree Explainer| Live |
127+
|What-if Analysis| Live |
128+
|Model Performance Comparison | Live |
129+
|Partial Dependence Plot| Live |
130+
|Surrogate Decision Tree | Coming Soon |
131+
|Anchors | Coming Soon |
132+
|Integrated Gradients (IG)| Coming Soon |
133+
134+
## Main Models Supported
135+
136+
| No. | Model Name | Status |
137+
|--|--|--|
138+
|1. | Catboost | Live|
139+
|2. | XGboost==1.0.2 | Live|
140+
|3. | Gradient Boosting Regressor| Live|
141+
|4. | RandomForest Model| Live|
142+
|5. | SVM|Live|
143+
|6. | KNeighboursClassifier| Live
144+
|7. | Logistic Regression| Live |
145+
|8. | DecisionTreeClassifier|Live |
146+
|9. | All Scikit-learn Models|Live |
147+
|10.| Neural Networks|Live |
148+
|11.| H2O.ai AutoML | Next in Line |
149+
|12.| TensorFlow Models | Coming Soon |
150+
|13.| PyTorch Models | Coming Soon |
151+
152+
136153
## Contributing
137154
Pull requests are welcome. In order to make changes to explainx, the ideal approach is to fork the repository then clone the fork locally.
138155

0 commit comments

Comments
 (0)