|
| 1 | +"""Context Precision metrics v2 - Modern implementation with function-based prompts.""" |
| 2 | + |
| 3 | +import typing as t |
| 4 | +from typing import List |
| 5 | + |
| 6 | +import numpy as np |
| 7 | +from pydantic import BaseModel |
| 8 | + |
| 9 | +from ragas.metrics.collections.base import BaseMetric |
| 10 | +from ragas.metrics.result import MetricResult |
| 11 | +from ragas.prompt.metrics.context_precision import ( |
| 12 | + context_precision_with_reference_prompt, |
| 13 | + context_precision_without_reference_prompt, |
| 14 | +) |
| 15 | + |
| 16 | +if t.TYPE_CHECKING: |
| 17 | + from ragas.llms.base import InstructorBaseRagasLLM |
| 18 | + |
| 19 | + |
| 20 | +class ContextPrecisionOutput(BaseModel): |
| 21 | + """Structured output for context precision evaluation.""" |
| 22 | + |
| 23 | + reason: str |
| 24 | + verdict: int |
| 25 | + |
| 26 | + |
| 27 | +class ContextPrecisionWithReference(BaseMetric): |
| 28 | + """ |
| 29 | + Modern v2 implementation of context precision with reference. |
| 30 | +
|
| 31 | + Evaluates whether retrieved contexts are useful for answering a question by comparing |
| 32 | + each context against a reference answer. The metric calculates average precision |
| 33 | + based on the usefulness verdicts from an LLM. |
| 34 | +
|
| 35 | + This implementation uses modern instructor LLMs with structured output. |
| 36 | + Only supports modern components - legacy wrappers are rejected with clear error messages. |
| 37 | +
|
| 38 | + Usage: |
| 39 | + >>> import openai |
| 40 | + >>> from ragas.llms.base import llm_factory |
| 41 | + >>> from ragas.metrics.collections import ContextPrecisionWithReference |
| 42 | + >>> |
| 43 | + >>> # Setup dependencies |
| 44 | + >>> client = openai.AsyncOpenAI() |
| 45 | + >>> llm = llm_factory("gpt-4o-mini", client=client) |
| 46 | + >>> |
| 47 | + >>> # Create metric instance |
| 48 | + >>> metric = ContextPrecisionWithReference(llm=llm) |
| 49 | + >>> |
| 50 | + >>> # Single evaluation |
| 51 | + >>> result = await metric.ascore( |
| 52 | + ... user_input="What is the capital of France?", |
| 53 | + ... reference="Paris is the capital of France.", |
| 54 | + ... retrieved_contexts=["Paris is the capital and largest city of France.", "Berlin is the capital of Germany."] |
| 55 | + ... ) |
| 56 | + >>> print(f"Context Precision: {result.value}") |
| 57 | +
|
| 58 | + Attributes: |
| 59 | + llm: Modern instructor-based LLM for context evaluation |
| 60 | + name: The metric name |
| 61 | + allowed_values: Score range (0.0 to 1.0, higher is better) |
| 62 | + """ |
| 63 | + |
| 64 | + # Type hints for linter (attributes are set in __init__) |
| 65 | + llm: "InstructorBaseRagasLLM" |
| 66 | + |
| 67 | + def __init__( |
| 68 | + self, |
| 69 | + llm: "InstructorBaseRagasLLM", |
| 70 | + name: str = "context_precision_with_reference", |
| 71 | + **kwargs, |
| 72 | + ): |
| 73 | + """ |
| 74 | + Initialize ContextPrecisionWithReference metric with required components. |
| 75 | +
|
| 76 | + Args: |
| 77 | + llm: Modern instructor-based LLM for context evaluation |
| 78 | + name: The metric name |
| 79 | + """ |
| 80 | + # Set attributes explicitly before calling super() |
| 81 | + self.llm = llm |
| 82 | + |
| 83 | + # Call super() for validation (without passing llm in kwargs) |
| 84 | + super().__init__(name=name, **kwargs) |
| 85 | + |
| 86 | + async def ascore( |
| 87 | + self, user_input: str, reference: str, retrieved_contexts: List[str] |
| 88 | + ) -> MetricResult: |
| 89 | + """ |
| 90 | + Calculate context precision score using reference. |
| 91 | +
|
| 92 | + Args: |
| 93 | + user_input: The question being asked |
| 94 | + reference: The reference answer to compare against |
| 95 | + retrieved_contexts: The retrieved contexts to evaluate |
| 96 | +
|
| 97 | + Returns: |
| 98 | + MetricResult with context precision score (0.0-1.0, higher is better) |
| 99 | + """ |
| 100 | + # Input validation |
| 101 | + if not user_input: |
| 102 | + raise ValueError("user_input cannot be empty") |
| 103 | + if not reference: |
| 104 | + raise ValueError("reference cannot be empty") |
| 105 | + if not retrieved_contexts: |
| 106 | + raise ValueError("retrieved_contexts cannot be empty") |
| 107 | + |
| 108 | + # Evaluate each retrieved context |
| 109 | + verdicts = [] |
| 110 | + for context in retrieved_contexts: |
| 111 | + prompt = context_precision_with_reference_prompt( |
| 112 | + user_input, context, reference |
| 113 | + ) |
| 114 | + result = await self.llm.agenerate(prompt, ContextPrecisionOutput) |
| 115 | + verdicts.append(result.verdict) |
| 116 | + |
| 117 | + # Calculate average precision |
| 118 | + score = self._calculate_average_precision(verdicts) |
| 119 | + return MetricResult(value=float(score)) |
| 120 | + |
| 121 | + def _calculate_average_precision(self, verdicts: List[int]) -> float: |
| 122 | + """Calculate average precision from binary verdicts. Matches legacy logic exactly.""" |
| 123 | + verdict_list = verdicts |
| 124 | + denominator = sum(verdict_list) + 1e-10 |
| 125 | + numerator = sum( |
| 126 | + [ |
| 127 | + (sum(verdict_list[: i + 1]) / (i + 1)) * verdict_list[i] |
| 128 | + for i in range(len(verdict_list)) |
| 129 | + ] |
| 130 | + ) |
| 131 | + score = numerator / denominator |
| 132 | + |
| 133 | + if np.isnan(score): |
| 134 | + # Match legacy warning behavior |
| 135 | + import logging |
| 136 | + |
| 137 | + logging.warning( |
| 138 | + "Invalid response format. Expected a list of dictionaries with keys 'verdict'" |
| 139 | + ) |
| 140 | + |
| 141 | + return score |
| 142 | + |
| 143 | + |
| 144 | +class ContextPrecisionWithoutReference(BaseMetric): |
| 145 | + """ |
| 146 | + Modern v2 implementation of context precision without reference. |
| 147 | +
|
| 148 | + Evaluates whether retrieved contexts are useful for answering a question by comparing |
| 149 | + each context against the generated response. The metric calculates average precision |
| 150 | + based on the usefulness verdicts from an LLM. |
| 151 | +
|
| 152 | + This implementation uses modern instructor LLMs with structured output. |
| 153 | + Only supports modern components - legacy wrappers are rejected with clear error messages. |
| 154 | +
|
| 155 | + Usage: |
| 156 | + >>> import openai |
| 157 | + >>> from ragas.llms.base import llm_factory |
| 158 | + >>> from ragas.metrics.collections import ContextPrecisionWithoutReference |
| 159 | + >>> |
| 160 | + >>> # Setup dependencies |
| 161 | + >>> client = openai.AsyncOpenAI() |
| 162 | + >>> llm = llm_factory("gpt-4o-mini", client=client) |
| 163 | + >>> |
| 164 | + >>> # Create metric instance |
| 165 | + >>> metric = ContextPrecisionWithoutReference(llm=llm) |
| 166 | + >>> |
| 167 | + >>> # Single evaluation |
| 168 | + >>> result = await metric.ascore( |
| 169 | + ... user_input="What is the capital of France?", |
| 170 | + ... response="Paris is the capital of France.", |
| 171 | + ... retrieved_contexts=["Paris is the capital and largest city of France.", "Berlin is the capital of Germany."] |
| 172 | + ... ) |
| 173 | + >>> print(f"Context Precision: {result.value}") |
| 174 | +
|
| 175 | + Attributes: |
| 176 | + llm: Modern instructor-based LLM for context evaluation |
| 177 | + name: The metric name |
| 178 | + allowed_values: Score range (0.0 to 1.0, higher is better) |
| 179 | + """ |
| 180 | + |
| 181 | + # Type hints for linter (attributes are set in __init__) |
| 182 | + llm: "InstructorBaseRagasLLM" |
| 183 | + |
| 184 | + def __init__( |
| 185 | + self, |
| 186 | + llm: "InstructorBaseRagasLLM", |
| 187 | + name: str = "context_precision_without_reference", |
| 188 | + **kwargs, |
| 189 | + ): |
| 190 | + """ |
| 191 | + Initialize ContextPrecisionWithoutReference metric with required components. |
| 192 | +
|
| 193 | + Args: |
| 194 | + llm: Modern instructor-based LLM for context evaluation |
| 195 | + name: The metric name |
| 196 | + """ |
| 197 | + # Set attributes explicitly before calling super() |
| 198 | + self.llm = llm |
| 199 | + |
| 200 | + # Call super() for validation (without passing llm in kwargs) |
| 201 | + super().__init__(name=name, **kwargs) |
| 202 | + |
| 203 | + async def ascore( |
| 204 | + self, user_input: str, response: str, retrieved_contexts: List[str] |
| 205 | + ) -> MetricResult: |
| 206 | + """ |
| 207 | + Calculate context precision score using response. |
| 208 | +
|
| 209 | + Args: |
| 210 | + user_input: The question being asked |
| 211 | + response: The response that was generated |
| 212 | + retrieved_contexts: The retrieved contexts to evaluate |
| 213 | +
|
| 214 | + Returns: |
| 215 | + MetricResult with context precision score (0.0-1.0, higher is better) |
| 216 | + """ |
| 217 | + # Input validation |
| 218 | + if not user_input: |
| 219 | + raise ValueError("user_input cannot be empty") |
| 220 | + if not response: |
| 221 | + raise ValueError("response cannot be empty") |
| 222 | + if not retrieved_contexts: |
| 223 | + raise ValueError("retrieved_contexts cannot be empty") |
| 224 | + |
| 225 | + # Evaluate each retrieved context |
| 226 | + verdicts = [] |
| 227 | + for context in retrieved_contexts: |
| 228 | + prompt = context_precision_without_reference_prompt( |
| 229 | + user_input, context, response |
| 230 | + ) |
| 231 | + result = await self.llm.agenerate(prompt, ContextPrecisionOutput) |
| 232 | + verdicts.append(result.verdict) |
| 233 | + |
| 234 | + # Calculate average precision |
| 235 | + score = self._calculate_average_precision(verdicts) |
| 236 | + return MetricResult(value=float(score)) |
| 237 | + |
| 238 | + def _calculate_average_precision(self, verdicts: List[int]) -> float: |
| 239 | + """Calculate average precision from binary verdicts. Matches legacy logic exactly.""" |
| 240 | + verdict_list = verdicts |
| 241 | + denominator = sum(verdict_list) + 1e-10 |
| 242 | + numerator = sum( |
| 243 | + [ |
| 244 | + (sum(verdict_list[: i + 1]) / (i + 1)) * verdict_list[i] |
| 245 | + for i in range(len(verdict_list)) |
| 246 | + ] |
| 247 | + ) |
| 248 | + score = numerator / denominator |
| 249 | + |
| 250 | + if np.isnan(score): |
| 251 | + # Match legacy warning behavior |
| 252 | + import logging |
| 253 | + |
| 254 | + logging.warning( |
| 255 | + "Invalid response format. Expected a list of dictionaries with keys 'verdict'" |
| 256 | + ) |
| 257 | + |
| 258 | + return score |
| 259 | + |
| 260 | + |
| 261 | +class ContextPrecision(ContextPrecisionWithReference): |
| 262 | + """ |
| 263 | + Modern v2 wrapper for ContextPrecisionWithReference with shorter name. |
| 264 | +
|
| 265 | + This is a simple wrapper that provides the legacy "context_precision" name |
| 266 | + while using the modern V2 implementation underneath. |
| 267 | +
|
| 268 | + Usage: |
| 269 | + >>> import openai |
| 270 | + >>> from ragas.llms.base import llm_factory |
| 271 | + >>> from ragas.metrics.collections import ContextPrecision |
| 272 | + >>> |
| 273 | + >>> # Setup dependencies |
| 274 | + >>> client = openai.AsyncOpenAI() |
| 275 | + >>> llm = llm_factory("gpt-4o-mini", client=client) |
| 276 | + >>> |
| 277 | + >>> # Create metric instance (same as ContextPrecisionWithReference) |
| 278 | + >>> metric = ContextPrecision(llm=llm) |
| 279 | + >>> |
| 280 | + >>> # Single evaluation |
| 281 | + >>> result = await metric.ascore( |
| 282 | + ... user_input="What is the capital of France?", |
| 283 | + ... reference="Paris is the capital of France.", |
| 284 | + ... retrieved_contexts=["Paris is the capital and largest city of France."] |
| 285 | + ... ) |
| 286 | + """ |
| 287 | + |
| 288 | + def __init__( |
| 289 | + self, |
| 290 | + llm: "InstructorBaseRagasLLM", |
| 291 | + **kwargs, |
| 292 | + ): |
| 293 | + """Initialize ContextPrecision with the legacy default name.""" |
| 294 | + super().__init__(llm, name="context_precision", **kwargs) |
| 295 | + |
| 296 | + |
| 297 | +class ContextUtilization(ContextPrecisionWithoutReference): |
| 298 | + """ |
| 299 | + Modern v2 wrapper for ContextPrecisionWithoutReference with shorter name. |
| 300 | +
|
| 301 | + This is a simple wrapper that provides the legacy "context_utilization" name |
| 302 | + while using the modern V2 implementation underneath. |
| 303 | +
|
| 304 | + Usage: |
| 305 | + >>> import openai |
| 306 | + >>> from ragas.llms.base import llm_factory |
| 307 | + >>> from ragas.metrics.collections import ContextUtilization |
| 308 | + >>> |
| 309 | + >>> # Setup dependencies |
| 310 | + >>> client = openai.AsyncOpenAI() |
| 311 | + >>> llm = llm_factory("gpt-4o-mini", client=client) |
| 312 | + >>> |
| 313 | + >>> # Create metric instance (same as ContextPrecisionWithoutReference) |
| 314 | + >>> metric = ContextUtilization(llm=llm) |
| 315 | + >>> |
| 316 | + >>> # Single evaluation |
| 317 | + >>> result = await metric.ascore( |
| 318 | + ... user_input="What is the capital of France?", |
| 319 | + ... response="Paris is the capital of France.", |
| 320 | + ... retrieved_contexts=["Paris is the capital and largest city of France."] |
| 321 | + ... ) |
| 322 | + """ |
| 323 | + |
| 324 | + def __init__( |
| 325 | + self, |
| 326 | + llm: "InstructorBaseRagasLLM", |
| 327 | + **kwargs, |
| 328 | + ): |
| 329 | + """Initialize ContextUtilization with the legacy default name.""" |
| 330 | + super().__init__(llm, name="context_utilization", **kwargs) |
0 commit comments